Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from openai import OpenAI | |
| import os | |
| import json | |
| from novita_sandbox.code_interpreter import Sandbox | |
| import atexit | |
| # --- Initialization --- | |
| client = OpenAI( | |
| base_url="https://api.novita.ai/openai", | |
| api_key=os.environ["NOVITA_API_KEY"], | |
| ) | |
| model = "meta-llama/llama-3.3-70b-instruct" | |
| # Create sandbox | |
| sandbox = Sandbox.create(timeout=1200) | |
| # --- Tool functions --- | |
| def read_file(path: str): | |
| print(f"[DEBUG] read_file called with path: {path}") | |
| try: | |
| content = sandbox.files.read(path) | |
| print(f"[DEBUG] read_file result: {content}") | |
| return content | |
| except Exception as e: | |
| print(f"[DEBUG] read_file error: {e}") | |
| return f"Error reading file: {e}" | |
| def write_file(path: str, data: str): | |
| print(f"[DEBUG] write_file called with path: {path}") | |
| try: | |
| sandbox.files.write(path, data) | |
| msg = f"File created successfully at {path}" | |
| print(f"[DEBUG] {msg}") | |
| return msg | |
| except Exception as e: | |
| print(f"[DEBUG] write_file error: {e}") | |
| return f"Error writing file: {e}" | |
| def write_files(files: list): | |
| print(f"[DEBUG] write_files called with {len(files)} files") | |
| try: | |
| sandbox.files.write_files(files) | |
| msg = f"{len(files)} file(s) created successfully" | |
| print(f"[DEBUG] {msg}") | |
| return msg | |
| except Exception as e: | |
| print(f"[DEBUG] write_files error: {e}") | |
| return f"Error writing multiple files: {e}" | |
| def run_commands(command: str): | |
| print(f"[DEBUG] run_commands called with command: {command}") | |
| try: | |
| result = sandbox.commands.run(command) | |
| print(f"[DEBUG] run_commands result: {result}") | |
| return result.stdout | |
| except Exception as e: | |
| print(f"[DEBUG] run_commands error: {e}") | |
| return f"Error running command: {e}" | |
| # --- Register tools --- | |
| tools = [ | |
| { | |
| "type": "function", | |
| "function": { | |
| "name": "read_file", | |
| "description": "Read contents of a file inside the sandbox", | |
| "parameters": { | |
| "type": "object", | |
| "properties": {"path": {"type": "string"}}, | |
| "required": ["path"], | |
| }, | |
| }, | |
| }, | |
| { | |
| "type": "function", | |
| "function": { | |
| "name": "write_file", | |
| "description": "Write a single file inside the sandbox", | |
| "parameters": { | |
| "type": "object", | |
| "properties": { | |
| "path": {"type": "string"}, | |
| "data": {"type": "string"}, | |
| }, | |
| "required": ["path", "data"], | |
| }, | |
| }, | |
| }, | |
| { | |
| "type": "function", | |
| "function": { | |
| "name": "write_files", | |
| "description": "Write multiple files inside the sandbox", | |
| "parameters": { | |
| "type": "object", | |
| "properties": { | |
| "files": { | |
| "type": "array", | |
| "items": { | |
| "type": "object", | |
| "properties": { | |
| "path": {"type": "string"}, | |
| "data": {"type": "string"}, | |
| }, | |
| "required": ["path", "data"], | |
| }, | |
| } | |
| }, | |
| "required": ["files"], | |
| }, | |
| }, | |
| }, | |
| { | |
| "type": "function", | |
| "function": { | |
| "name": "run_commands", | |
| "description": "Run a single shell command inside the sandbox working directory", | |
| "parameters": { | |
| "type": "object", | |
| "properties": { | |
| "command": {"type": "string"}, | |
| }, | |
| "required": ["command"], | |
| }, | |
| }, | |
| }, | |
| ] | |
| # --- Persistent chat messages --- | |
| messages = [] | |
| # --- Global model setter --- | |
| def set_model(selected_model): | |
| global model | |
| model = selected_model | |
| print(f"[DEBUG] Model switched to: {model}") | |
| return f"β Model switched to **{model}**" | |
| def chat_fn(user_message, history): | |
| global messages, model | |
| messages.append({"role": "user", "content": user_message}) | |
| # Send to model | |
| response = client.chat.completions.create( | |
| model=model, | |
| messages=messages, | |
| tools=tools, | |
| ) | |
| assistant_msg = response.choices[0].message | |
| messages.append(assistant_msg) | |
| output_text = "" | |
| if assistant_msg.tool_calls: | |
| print(f"[DEBUG] Assistant requested {len(assistant_msg.tool_calls)} tool call(s).") | |
| for tool_call in assistant_msg.tool_calls: | |
| fn_name = tool_call.function.name | |
| fn_args = json.loads(tool_call.function.arguments) | |
| print(f"[DEBUG] Tool call detected: {fn_name} with args {fn_args}") | |
| if fn_name == "read_file": | |
| fn_result = read_file(**fn_args) | |
| elif fn_name == "write_file": | |
| fn_result = write_file(**fn_args) | |
| elif fn_name == "write_files": | |
| fn_result = write_files(**fn_args) | |
| elif fn_name == "run_commands": | |
| fn_result = run_commands(**fn_args) | |
| else: | |
| fn_result = f"Error: Unknown tool {fn_name}" | |
| messages.append({ | |
| "tool_call_id": tool_call.id, | |
| "role": "tool", | |
| "content": str(fn_result), | |
| }) | |
| follow_up = client.chat.completions.create( | |
| model=model, | |
| messages=messages, | |
| ) | |
| final_answer = follow_up.choices[0].message | |
| messages.append(final_answer) | |
| output_text = final_answer.content | |
| else: | |
| output_text = assistant_msg.content | |
| return output_text | |
| # --- Command Interface function --- | |
| def execute_command(command): | |
| if not command.strip(): | |
| return "β οΈ Please enter a command." | |
| print(f"[DEBUG] Executing command from interface: {command}") | |
| output = run_commands(command) | |
| return f"```bash\n{output}\n```" if output else "β Command executed (no output)." | |
| # --- Gradio UI --- | |
| with gr.Blocks(title="Novita Sandbox App") as demo: | |
| gr.Markdown("## π§ Novita Sandbox Agent") | |
| gr.Markdown( | |
| "This app is an AI-powered **code agent** that lets you chat with intelligent assistants backed by **Novita AI LLMs**. These agents can write, read, and execute code safely inside a **Novita sandbox**, providing a secure environment for running commands, testing scripts, and managing files, all through an intuitive chat interface with model selection and command execution built right in." | |
| ) | |
| with gr.Row(equal_height=True): | |
| # Left: Chat Interface | |
| with gr.Column(scale=2): | |
| gr.Markdown("### π¬ Chat Interface") | |
| gr.ChatInterface(chat_fn) | |
| # Right: Command Interface | |
| with gr.Column(scale=1): | |
| gr.Markdown("### π» Command Interface") | |
| # Model selector | |
| model_selector = gr.Dropdown( | |
| label="Select Model", | |
| choices=[ | |
| "meta-llama/llama-3.3-70b-instruct", | |
| "deepseek/deepseek-v3.2-exp", | |
| "qwen/qwen3-coder-30b-a3b-instruct", | |
| "openai/gpt-oss-120b", | |
| "moonshotai/kimi-k2-instruct", | |
| ], | |
| value=model, | |
| interactive=True, | |
| ) | |
| model_status = gr.Markdown(f"β Current model: **{model}**") | |
| model_selector.change(set_model, inputs=model_selector, outputs=model_status) | |
| command_input = gr.Textbox( | |
| label="Command", | |
| placeholder="e.g., ls, python main.py", | |
| lines=1, | |
| ) | |
| with gr.Row(): | |
| run_btn = gr.Button("Run", variant="primary", scale=0) | |
| command_output = gr.Markdown("Command output will appear here...") | |
| run_btn.click(execute_command, inputs=command_input, outputs=command_output) | |
| # --- Cleanup on exit --- | |
| atexit.register(lambda: (sandbox.kill(), print("[DEBUG] Sandbox terminated. π"))) | |
| if __name__ == "__main__": | |
| demo.launch() | |