Eteims's picture
Update app.py
ed0a70e verified
raw
history blame
8.29 kB
import gradio as gr
from openai import OpenAI
import os
import json
from novita_sandbox.code_interpreter import Sandbox
import atexit
# --- Initialization ---
client = OpenAI(
base_url="https://api.novita.ai/openai",
api_key=os.environ["NOVITA_API_KEY"],
)
model = "meta-llama/llama-3.3-70b-instruct"
# Create sandbox
sandbox = Sandbox.create(timeout=1200)
# --- Tool functions ---
def read_file(path: str):
print(f"[DEBUG] read_file called with path: {path}")
try:
content = sandbox.files.read(path)
print(f"[DEBUG] read_file result: {content}")
return content
except Exception as e:
print(f"[DEBUG] read_file error: {e}")
return f"Error reading file: {e}"
def write_file(path: str, data: str):
print(f"[DEBUG] write_file called with path: {path}")
try:
sandbox.files.write(path, data)
msg = f"File created successfully at {path}"
print(f"[DEBUG] {msg}")
return msg
except Exception as e:
print(f"[DEBUG] write_file error: {e}")
return f"Error writing file: {e}"
def write_files(files: list):
print(f"[DEBUG] write_files called with {len(files)} files")
try:
sandbox.files.write_files(files)
msg = f"{len(files)} file(s) created successfully"
print(f"[DEBUG] {msg}")
return msg
except Exception as e:
print(f"[DEBUG] write_files error: {e}")
return f"Error writing multiple files: {e}"
def run_commands(command: str):
print(f"[DEBUG] run_commands called with command: {command}")
try:
result = sandbox.commands.run(command)
print(f"[DEBUG] run_commands result: {result}")
return result.stdout
except Exception as e:
print(f"[DEBUG] run_commands error: {e}")
return f"Error running command: {e}"
# --- Register tools ---
tools = [
{
"type": "function",
"function": {
"name": "read_file",
"description": "Read contents of a file inside the sandbox",
"parameters": {
"type": "object",
"properties": {"path": {"type": "string"}},
"required": ["path"],
},
},
},
{
"type": "function",
"function": {
"name": "write_file",
"description": "Write a single file inside the sandbox",
"parameters": {
"type": "object",
"properties": {
"path": {"type": "string"},
"data": {"type": "string"},
},
"required": ["path", "data"],
},
},
},
{
"type": "function",
"function": {
"name": "write_files",
"description": "Write multiple files inside the sandbox",
"parameters": {
"type": "object",
"properties": {
"files": {
"type": "array",
"items": {
"type": "object",
"properties": {
"path": {"type": "string"},
"data": {"type": "string"},
},
"required": ["path", "data"],
},
}
},
"required": ["files"],
},
},
},
{
"type": "function",
"function": {
"name": "run_commands",
"description": "Run a single shell command inside the sandbox working directory",
"parameters": {
"type": "object",
"properties": {
"command": {"type": "string"},
},
"required": ["command"],
},
},
},
]
# --- Persistent chat messages ---
messages = []
# --- Global model setter ---
def set_model(selected_model):
global model
model = selected_model
print(f"[DEBUG] Model switched to: {model}")
return f"βœ… Model switched to **{model}**"
def chat_fn(user_message, history):
global messages, model
messages.append({"role": "user", "content": user_message})
# Send to model
response = client.chat.completions.create(
model=model,
messages=messages,
tools=tools,
)
assistant_msg = response.choices[0].message
messages.append(assistant_msg)
output_text = ""
if assistant_msg.tool_calls:
print(f"[DEBUG] Assistant requested {len(assistant_msg.tool_calls)} tool call(s).")
for tool_call in assistant_msg.tool_calls:
fn_name = tool_call.function.name
fn_args = json.loads(tool_call.function.arguments)
print(f"[DEBUG] Tool call detected: {fn_name} with args {fn_args}")
if fn_name == "read_file":
fn_result = read_file(**fn_args)
elif fn_name == "write_file":
fn_result = write_file(**fn_args)
elif fn_name == "write_files":
fn_result = write_files(**fn_args)
elif fn_name == "run_commands":
fn_result = run_commands(**fn_args)
else:
fn_result = f"Error: Unknown tool {fn_name}"
messages.append({
"tool_call_id": tool_call.id,
"role": "tool",
"content": str(fn_result),
})
follow_up = client.chat.completions.create(
model=model,
messages=messages,
)
final_answer = follow_up.choices[0].message
messages.append(final_answer)
output_text = final_answer.content
else:
output_text = assistant_msg.content
return output_text
# --- Command Interface function ---
def execute_command(command):
if not command.strip():
return "⚠️ Please enter a command."
print(f"[DEBUG] Executing command from interface: {command}")
output = run_commands(command)
return f"```bash\n{output}\n```" if output else "βœ… Command executed (no output)."
# --- Gradio UI ---
with gr.Blocks(title="Novita Sandbox App") as demo:
gr.Markdown("## 🧠 Novita Sandbox Agent")
gr.Markdown(
"This app is an AI-powered **code agent** that lets you chat with intelligent assistants backed by **Novita AI LLMs**. These agents can write, read, and execute code safely inside a **Novita sandbox**, providing a secure environment for running commands, testing scripts, and managing files, all through an intuitive chat interface with model selection and command execution built right in."
)
with gr.Row(equal_height=True):
# Left: Chat Interface
with gr.Column(scale=2):
gr.Markdown("### πŸ’¬ Chat Interface")
gr.ChatInterface(chat_fn)
# Right: Command Interface
with gr.Column(scale=1):
gr.Markdown("### πŸ’» Command Interface")
# Model selector
model_selector = gr.Dropdown(
label="Select Model",
choices=[
"meta-llama/llama-3.3-70b-instruct",
"deepseek/deepseek-v3.2-exp",
"qwen/qwen3-coder-30b-a3b-instruct",
"openai/gpt-oss-120b",
"moonshotai/kimi-k2-instruct",
],
value=model,
interactive=True,
)
model_status = gr.Markdown(f"βœ… Current model: **{model}**")
model_selector.change(set_model, inputs=model_selector, outputs=model_status)
command_input = gr.Textbox(
label="Command",
placeholder="e.g., ls, python main.py",
lines=1,
)
with gr.Row():
run_btn = gr.Button("Run", variant="primary", scale=0)
command_output = gr.Markdown("Command output will appear here...")
run_btn.click(execute_command, inputs=command_input, outputs=command_output)
# --- Cleanup on exit ---
atexit.register(lambda: (sandbox.kill(), print("[DEBUG] Sandbox terminated. πŸ‘‹")))
if __name__ == "__main__":
demo.launch()