File size: 8,105 Bytes
07ccbd9
 
 
 
2354057
 
 
 
07ccbd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2354057
07ccbd9
 
 
 
 
 
 
 
2354057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07ccbd9
2354057
07ccbd9
 
2354057
 
 
 
 
 
 
 
 
 
07ccbd9
 
2354057
 
 
 
 
 
 
 
07ccbd9
 
542377d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07ccbd9
542377d
07ccbd9
 
 
 
 
 
542377d
 
 
07ccbd9
2354057
07ccbd9
 
 
 
 
 
 
 
 
 
 
2354057
07ccbd9
 
2354057
07ccbd9
 
 
 
 
 
8d42d3a
 
 
 
 
c3f10b2
542377d
c3f10b2
8d42d3a
c3f10b2
542377d
8d42d3a
542377d
c3f10b2
 
542377d
8d42d3a
542377d
c3f10b2
 
 
 
542377d
c3f10b2
 
542377d
c3f10b2
5a424eb
8d42d3a
 
 
 
 
 
542377d
8d42d3a
 
 
 
 
07ccbd9
 
 
 
8d42d3a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
import json
import os
import datetime
import urllib.parse

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df


def restart_space():
    API.restart_space(repo_id=REPO_ID)


def save_submission_and_notify(model_name, contact_email, weight_link, json_results, paper_link, description):
    """Save submission to file and provide instructions for email"""
    try:
        # Validate JSON format if provided
        if json_results.strip():
            try:
                json.loads(json_results)
            except json.JSONDecodeError:
                return "❌ Invalid JSON format in results field"

        # Create submission data
        submission_data = {
            "timestamp": datetime.datetime.now().isoformat(),
            "model_name": model_name,
            "contact_email": contact_email,
            "weight_link": weight_link,
            "paper_link": paper_link,
            "description": description,
            "json_results": json_results,
        }

        # Save to submissions directory
        os.makedirs("submissions", exist_ok=True)
        filename = (
            f"submissions/{model_name.replace('/', '_')}_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
        )

        with open(filename, "w") as f:
            json.dump(submission_data, f, indent=2)

        # Create mailto link for user
        subject = f"SearchAgent Leaderboard Submission: {model_name}"
        body = f"""New model submission for SearchAgent Leaderboard:

Model Name: {model_name}
Contact Email: {contact_email}
Weight Link: {weight_link}
Paper Link: {paper_link}
Description: {description}

JSON Results:
{json_results}"""

        # URL encode the email content
        mailto_link = (
            f"mailto:[email protected]?subject={urllib.parse.quote(subject)}&body={urllib.parse.quote(body[:500])}"
        )

        return f"""βœ… Submission saved successfully!
        
πŸ“§ **Please send your submission to: [email protected]**

You can either:
1. Click here to open your email client: [Send Email](mailto:[email protected])
2. Or copy the submission details above and send manually

Your submission has been saved to: {filename}

We'll review your model and get back to you at {contact_email}."""

    except Exception as e:
        return f"❌ Failed to save submission: {str(e)}"


### Space initialisation
# Use local data for demo purposes
try:
    print(EVAL_REQUESTS_PATH)
    # For demo, use local eval-queue directory if it exists
    import os

    if not os.path.exists(EVAL_REQUESTS_PATH):
        os.makedirs(EVAL_REQUESTS_PATH, exist_ok=True)
    # snapshot_download(
    #     repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    # )
except Exception as e:
    print(f"Could not setup eval requests path: {e}")
try:
    print(EVAL_RESULTS_PATH)
    # For demo, use local eval-results directory if it exists
    if not os.path.exists(EVAL_RESULTS_PATH):
        os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
    # snapshot_download(
    #     repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    # )
except Exception as e:
    print(f"Could not setup eval results path: {e}")


def _debug_print_dataframe(name: str, dataframe: pd.DataFrame) -> None:
    if dataframe is None:
        print(f"[debug] {name}: DataFrame is None")
        return
    print(f"[debug] {name}: shape={dataframe.shape}, columns={list(dataframe.columns)}")
    if not dataframe.empty:
        preview = dataframe.head().to_dict(orient="records")
        print(f"[debug] {name}: head={preview}")
    else:
        print(f"[debug] {name}: DataFrame is empty")


def _debug_list_dir(label: str, path: str, limit: int = 10) -> None:
    try:
        entries = os.listdir(path)
        print(f"[debug] {label}: path={path}, count={len(entries)}, preview={entries[:limit]}")
    except FileNotFoundError:
        print(f"[debug] {label}: path={path} not found")
    except Exception as exc:
        print(f"[debug] {label}: path={path} error={exc}")


_debug_list_dir("EVAL_RESULTS", EVAL_RESULTS_PATH)
_debug_list_dir("EVAL_QUEUE", EVAL_REQUESTS_PATH)

LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
_debug_print_dataframe("LEADERBOARD", LEADERBOARD_DF)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
_debug_print_dataframe("EVAL_QUEUE_FINISHED", finished_eval_queue_df)
_debug_print_dataframe("EVAL_QUEUE_RUNNING", running_eval_queue_df)
_debug_print_dataframe("EVAL_QUEUE_PENDING", pending_eval_queue_df)


def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.model.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn.model_size.name, type="checkboxgroup", label="Model Size"),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


def create_demo():
    """Create the Gradio interface."""
    with gr.Blocks(css=custom_css) as demo:
        gr.HTML(TITLE)

        with gr.Tabs(elem_classes="tab-buttons") as tabs:
            print("[debug] Rendering leaderboard tab start")
            with gr.TabItem("πŸ… SearchAgent Benchmark", elem_id="llm-benchmark-tab-table", id=0):
                leaderboard = init_leaderboard(LEADERBOARD_DF)
                gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
            print("[debug] Rendering leaderboard tab done")

            print("[debug] Rendering about tab start")
            with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
                gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
            print("[debug] Rendering about tab done")

            print("[debug] Rendering submit tab start")
            with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
                with gr.Column():
                    with gr.Row():
                        gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
            print("[debug] Rendering submit tab done")

        with gr.Row():
            print("[debug] Rendering citation start")
            with gr.Accordion("πŸ“™ Citation", open=False):
                gr.Textbox(
                    value=CITATION_BUTTON_TEXT,
                    label=CITATION_BUTTON_LABEL,
                    lines=20,
                    elem_id="citation-button",
                    show_copy_button=True,
                )
            print("[debug] Rendering citation done")

    return demo


demo = create_demo()

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.launch(show_error=True)