Spaces:
Sleeping
Sleeping
File size: 8,105 Bytes
07ccbd9 2354057 07ccbd9 2354057 07ccbd9 2354057 07ccbd9 2354057 07ccbd9 2354057 07ccbd9 2354057 07ccbd9 542377d 07ccbd9 542377d 07ccbd9 542377d 07ccbd9 2354057 07ccbd9 2354057 07ccbd9 2354057 07ccbd9 8d42d3a c3f10b2 542377d c3f10b2 8d42d3a c3f10b2 542377d 8d42d3a 542377d c3f10b2 542377d 8d42d3a 542377d c3f10b2 542377d c3f10b2 542377d c3f10b2 5a424eb 8d42d3a 542377d 8d42d3a 07ccbd9 8d42d3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
import json
import os
import datetime
import urllib.parse
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
def restart_space():
API.restart_space(repo_id=REPO_ID)
def save_submission_and_notify(model_name, contact_email, weight_link, json_results, paper_link, description):
"""Save submission to file and provide instructions for email"""
try:
# Validate JSON format if provided
if json_results.strip():
try:
json.loads(json_results)
except json.JSONDecodeError:
return "β Invalid JSON format in results field"
# Create submission data
submission_data = {
"timestamp": datetime.datetime.now().isoformat(),
"model_name": model_name,
"contact_email": contact_email,
"weight_link": weight_link,
"paper_link": paper_link,
"description": description,
"json_results": json_results,
}
# Save to submissions directory
os.makedirs("submissions", exist_ok=True)
filename = (
f"submissions/{model_name.replace('/', '_')}_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
)
with open(filename, "w") as f:
json.dump(submission_data, f, indent=2)
# Create mailto link for user
subject = f"SearchAgent Leaderboard Submission: {model_name}"
body = f"""New model submission for SearchAgent Leaderboard:
Model Name: {model_name}
Contact Email: {contact_email}
Weight Link: {weight_link}
Paper Link: {paper_link}
Description: {description}
JSON Results:
{json_results}"""
# URL encode the email content
mailto_link = (
f"mailto:[email protected]?subject={urllib.parse.quote(subject)}&body={urllib.parse.quote(body[:500])}"
)
return f"""β
Submission saved successfully!
π§ **Please send your submission to: [email protected]**
You can either:
1. Click here to open your email client: [Send Email](mailto:[email protected])
2. Or copy the submission details above and send manually
Your submission has been saved to: {filename}
We'll review your model and get back to you at {contact_email}."""
except Exception as e:
return f"β Failed to save submission: {str(e)}"
### Space initialisation
# Use local data for demo purposes
try:
print(EVAL_REQUESTS_PATH)
# For demo, use local eval-queue directory if it exists
import os
if not os.path.exists(EVAL_REQUESTS_PATH):
os.makedirs(EVAL_REQUESTS_PATH, exist_ok=True)
# snapshot_download(
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
# )
except Exception as e:
print(f"Could not setup eval requests path: {e}")
try:
print(EVAL_RESULTS_PATH)
# For demo, use local eval-results directory if it exists
if not os.path.exists(EVAL_RESULTS_PATH):
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
# snapshot_download(
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
# )
except Exception as e:
print(f"Could not setup eval results path: {e}")
def _debug_print_dataframe(name: str, dataframe: pd.DataFrame) -> None:
if dataframe is None:
print(f"[debug] {name}: DataFrame is None")
return
print(f"[debug] {name}: shape={dataframe.shape}, columns={list(dataframe.columns)}")
if not dataframe.empty:
preview = dataframe.head().to_dict(orient="records")
print(f"[debug] {name}: head={preview}")
else:
print(f"[debug] {name}: DataFrame is empty")
def _debug_list_dir(label: str, path: str, limit: int = 10) -> None:
try:
entries = os.listdir(path)
print(f"[debug] {label}: path={path}, count={len(entries)}, preview={entries[:limit]}")
except FileNotFoundError:
print(f"[debug] {label}: path={path} not found")
except Exception as exc:
print(f"[debug] {label}: path={path} error={exc}")
_debug_list_dir("EVAL_RESULTS", EVAL_RESULTS_PATH)
_debug_list_dir("EVAL_QUEUE", EVAL_REQUESTS_PATH)
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
_debug_print_dataframe("LEADERBOARD", LEADERBOARD_DF)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
_debug_print_dataframe("EVAL_QUEUE_FINISHED", finished_eval_queue_df)
_debug_print_dataframe("EVAL_QUEUE_RUNNING", running_eval_queue_df)
_debug_print_dataframe("EVAL_QUEUE_PENDING", pending_eval_queue_df)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_size.name, type="checkboxgroup", label="Model Size"),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def create_demo():
"""Create the Gradio interface."""
with gr.Blocks(css=custom_css) as demo:
gr.HTML(TITLE)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
print("[debug] Rendering leaderboard tab start")
with gr.TabItem("π
SearchAgent Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
print("[debug] Rendering leaderboard tab done")
print("[debug] Rendering about tab start")
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
print("[debug] Rendering about tab done")
print("[debug] Rendering submit tab start")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
print("[debug] Rendering submit tab done")
with gr.Row():
print("[debug] Rendering citation start")
with gr.Accordion("π Citation", open=False):
gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
print("[debug] Rendering citation done")
return demo
demo = create_demo()
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.launch(show_error=True)
|