Spaces:
Sleeping
Sleeping
Deleted app.ipynb
Browse files- app.ipynb +0 -223
- app.py +4 -7
- example.jpg β examples/example.jpg +0 -0
- image_00293.jpg β examples/image_00293.jpg +0 -0
- image_02828.jpg β examples/image_02828.jpg +0 -0
app.ipynb
DELETED
|
@@ -1,223 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": 1,
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"outputs": [
|
| 8 |
-
{
|
| 9 |
-
"name": "stderr",
|
| 10 |
-
"output_type": "stream",
|
| 11 |
-
"text": [
|
| 12 |
-
"/home/mahnaz/mlprojects/bloom_classifier/ven_bloom_gradio/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
| 13 |
-
" from .autonotebook import tqdm as notebook_tqdm\n"
|
| 14 |
-
]
|
| 15 |
-
}
|
| 16 |
-
],
|
| 17 |
-
"source": [
|
| 18 |
-
"import gradio as gr\n",
|
| 19 |
-
"import json\n",
|
| 20 |
-
"from transformers import pipeline\n",
|
| 21 |
-
"from transformers import AutoImageProcessor\n",
|
| 22 |
-
"from PIL import Image"
|
| 23 |
-
]
|
| 24 |
-
},
|
| 25 |
-
{
|
| 26 |
-
"cell_type": "code",
|
| 27 |
-
"execution_count": 10,
|
| 28 |
-
"metadata": {},
|
| 29 |
-
"outputs": [],
|
| 30 |
-
"source": [
|
| 31 |
-
"from PIL import Image\n",
|
| 32 |
-
"from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize\n",
|
| 33 |
-
"import numpy as np\n",
|
| 34 |
-
"\n",
|
| 35 |
-
"def preprocess_input(input_data, image_processor):\n",
|
| 36 |
-
" \"\"\"\n",
|
| 37 |
-
" Preprocesses the input image for inference.\n",
|
| 38 |
-
"\n",
|
| 39 |
-
" Parameters:\n",
|
| 40 |
-
" input_data (str or np.ndarray): Path to the image file in .jpg format or a NumPy array.\n",
|
| 41 |
-
" image_processor (AutoImageProcessor): An instance of AutoImageProcessor from the model's checkpoint.\n",
|
| 42 |
-
"\n",
|
| 43 |
-
" Returns:\n",
|
| 44 |
-
" processed_img (torch.Tensor): Preprocessed image ready for inference.\n",
|
| 45 |
-
" \"\"\"\n",
|
| 46 |
-
" # Load the image based on the input type\n",
|
| 47 |
-
" if isinstance(input_data, str):\n",
|
| 48 |
-
" img = Image.open(input_data).convert('RGB')\n",
|
| 49 |
-
" elif isinstance(input_data, np.ndarray):\n",
|
| 50 |
-
" img = Image.fromarray(input_data.astype('uint8'), 'RGB')\n",
|
| 51 |
-
" else:\n",
|
| 52 |
-
" raise ValueError(\"Unsupported input type. Only str and np.ndarray are supported.\")\n",
|
| 53 |
-
" \n",
|
| 54 |
-
" # Obtain the mean and std from image_processor\n",
|
| 55 |
-
" mean = image_processor.image_mean\n",
|
| 56 |
-
" std = image_processor.image_std\n",
|
| 57 |
-
" \n",
|
| 58 |
-
" # Obtain the image size from image_processor\n",
|
| 59 |
-
" size = (\n",
|
| 60 |
-
" image_processor.size[\"shortest_edge\"]\n",
|
| 61 |
-
" if \"shortest_edge\" in image_processor.size\n",
|
| 62 |
-
" else (image_processor.size[\"height\"], image_processor.size[\"width\"])\n",
|
| 63 |
-
" )\n",
|
| 64 |
-
" \n",
|
| 65 |
-
" # Define the transformations\n",
|
| 66 |
-
" preprocess = Compose([\n",
|
| 67 |
-
" Resize(size), # Resizing to the same size used during training\n",
|
| 68 |
-
" CenterCrop(size), # Center cropping to the same size used during training\n",
|
| 69 |
-
" ToTensor(),\n",
|
| 70 |
-
" Normalize(mean=mean, std=std)\n",
|
| 71 |
-
" ])\n",
|
| 72 |
-
" \n",
|
| 73 |
-
" # Apply the transformations\n",
|
| 74 |
-
" processed_img = preprocess(img)\n",
|
| 75 |
-
" \n",
|
| 76 |
-
" # Add a batch dimension\n",
|
| 77 |
-
" processed_img = processed_img.unsqueeze(0) # This is necessary because the model expects a batch\n",
|
| 78 |
-
" to_pil = ToPILImage()\n",
|
| 79 |
-
" processed_img = to_pil(processed_img)\n",
|
| 80 |
-
"\n",
|
| 81 |
-
" return processed_img\n"
|
| 82 |
-
]
|
| 83 |
-
},
|
| 84 |
-
{
|
| 85 |
-
"cell_type": "code",
|
| 86 |
-
"execution_count": 13,
|
| 87 |
-
"metadata": {},
|
| 88 |
-
"outputs": [],
|
| 89 |
-
"source": [
|
| 90 |
-
"from PIL import Image\n",
|
| 91 |
-
"from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize\n",
|
| 92 |
-
"\n",
|
| 93 |
-
"def preprocess_input(image_path, image_processor):\n",
|
| 94 |
-
" \"\"\"\n",
|
| 95 |
-
" Preprocesses the input image for inference.\n",
|
| 96 |
-
"\n",
|
| 97 |
-
" Parameters:\n",
|
| 98 |
-
" image_path (str): Path to the image file in .jpg format.\n",
|
| 99 |
-
" image_processor (AutoImageProcessor): An instance of AutoImageProcessor from the model's checkpoint.\n",
|
| 100 |
-
"\n",
|
| 101 |
-
" Returns:\n",
|
| 102 |
-
" processed_img (torch.Tensor): Preprocessed image ready for inference.\n",
|
| 103 |
-
" \"\"\"\n",
|
| 104 |
-
" # Load the image\n",
|
| 105 |
-
" img = Image.open(image_path).convert('RGB')\n",
|
| 106 |
-
" \n",
|
| 107 |
-
" # Obtain the mean and std from image_processor\n",
|
| 108 |
-
" mean = image_processor.image_mean\n",
|
| 109 |
-
" std = image_processor.image_std\n",
|
| 110 |
-
" \n",
|
| 111 |
-
" # Obtain the image size from image_processor\n",
|
| 112 |
-
" size = (\n",
|
| 113 |
-
" image_processor.size[\"shortest_edge\"]\n",
|
| 114 |
-
" if \"shortest_edge\" in image_processor.size\n",
|
| 115 |
-
" else (image_processor.size[\"height\"], image_processor.size[\"width\"])\n",
|
| 116 |
-
" )\n",
|
| 117 |
-
" \n",
|
| 118 |
-
" # Define the transformations\n",
|
| 119 |
-
" preprocess = Compose([\n",
|
| 120 |
-
" Resize(size), # Resizing to the same size used during training\n",
|
| 121 |
-
" CenterCrop(size), # Center cropping to the same size used during training\n",
|
| 122 |
-
" ToTensor(),\n",
|
| 123 |
-
" Normalize(mean=mean, std=std)\n",
|
| 124 |
-
" ])\n",
|
| 125 |
-
" \n",
|
| 126 |
-
" # Apply the transformations\n",
|
| 127 |
-
" processed_img = preprocess(img)\n",
|
| 128 |
-
" \n",
|
| 129 |
-
" # Add a batch dimension\n",
|
| 130 |
-
" processed_img = processed_img.unsqueeze(0) # This is necessary because the model expects a batch\n",
|
| 131 |
-
"\n",
|
| 132 |
-
" return processed_img\n"
|
| 133 |
-
]
|
| 134 |
-
},
|
| 135 |
-
{
|
| 136 |
-
"cell_type": "code",
|
| 137 |
-
"execution_count": 1,
|
| 138 |
-
"metadata": {},
|
| 139 |
-
"outputs": [
|
| 140 |
-
{
|
| 141 |
-
"name": "stderr",
|
| 142 |
-
"output_type": "stream",
|
| 143 |
-
"text": [
|
| 144 |
-
"/home/mahnaz/mlprojects/bloom_classifier/ven_bloom_gradio/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
| 145 |
-
" from .autonotebook import tqdm as notebook_tqdm\n"
|
| 146 |
-
]
|
| 147 |
-
}
|
| 148 |
-
],
|
| 149 |
-
"source": [
|
| 150 |
-
"import gradio as gr\n",
|
| 151 |
-
"import json\n",
|
| 152 |
-
"from transformers import pipeline\n",
|
| 153 |
-
"\n",
|
| 154 |
-
"\n",
|
| 155 |
-
"def load_label_to_name_mapping(json_file_path):\n",
|
| 156 |
-
" \"\"\"Load the label-to-name mapping from a JSON file.\"\"\"\n",
|
| 157 |
-
" with open(json_file_path, 'r') as f:\n",
|
| 158 |
-
" mapping = json.load(f)\n",
|
| 159 |
-
" return {int(k): v for k, v in mapping.items()}\n",
|
| 160 |
-
"\n",
|
| 161 |
-
"def infer_flower_name(classifier, image):\n",
|
| 162 |
-
" \"\"\"Perform inference on an image and return the flower name.\"\"\"\n",
|
| 163 |
-
" # Perform inference\n",
|
| 164 |
-
" # Load the model checkpoint for inference\n",
|
| 165 |
-
" \n",
|
| 166 |
-
" result = classifier(image)\n",
|
| 167 |
-
" # Get the label from the inference result\n",
|
| 168 |
-
" label = result[0]['label'].split('_')[-1] # The label is usually in the format 'LABEL_#'\n",
|
| 169 |
-
" label = int(label)\n",
|
| 170 |
-
" \n",
|
| 171 |
-
" # Map the integer label to the flower name\n",
|
| 172 |
-
" json_file_path = 'label_to_name.json'\n",
|
| 173 |
-
" label_to_name = load_label_to_name_mapping(json_file_path)\n",
|
| 174 |
-
" flower_name = label_to_name.get(label, \"Unknown\")\n",
|
| 175 |
-
" \n",
|
| 176 |
-
" return flower_name\n",
|
| 177 |
-
"\n",
|
| 178 |
-
"\n",
|
| 179 |
-
"\n",
|
| 180 |
-
"def predict(prompt_img):# would call a model to make a prediction on an input and return the output.\n",
|
| 181 |
-
"\n",
|
| 182 |
-
" # Instantiate the AutoImageProcessor\n",
|
| 183 |
-
" #image_processor = AutoImageProcessor.from_pretrained(\"google/vit-base-patch16-224-in21k\")\n",
|
| 184 |
-
"\n",
|
| 185 |
-
" # Preprocess the input image\n",
|
| 186 |
-
" #image_path = 'path/to/your/image.jpg'\n",
|
| 187 |
-
" #processed_img = preprocess_input(prompt_img, image_processor)\n",
|
| 188 |
-
" processed_img= prompt_img \n",
|
| 189 |
-
" classifier = pipeline(\"image-classification\", model=\"checkpoint-160\")\n",
|
| 190 |
-
" flower_name = infer_flower_name(classifier, processed_img)\n",
|
| 191 |
-
" return flower_name\n",
|
| 192 |
-
"demo = gr.Interface(fn=predict, \n",
|
| 193 |
-
" inputs=gr.Image(type=\"pil\"), \n",
|
| 194 |
-
" outputs=gr.Label(num_top_classes=3),\n",
|
| 195 |
-
" examples=[\"example.jpg\"])\n",
|
| 196 |
-
"\n",
|
| 197 |
-
"demo.launch()"
|
| 198 |
-
]
|
| 199 |
-
}
|
| 200 |
-
],
|
| 201 |
-
"metadata": {
|
| 202 |
-
"kernelspec": {
|
| 203 |
-
"display_name": "venv_bloom-classifier",
|
| 204 |
-
"language": "python",
|
| 205 |
-
"name": "python3"
|
| 206 |
-
},
|
| 207 |
-
"language_info": {
|
| 208 |
-
"codemirror_mode": {
|
| 209 |
-
"name": "ipython",
|
| 210 |
-
"version": 3
|
| 211 |
-
},
|
| 212 |
-
"file_extension": ".py",
|
| 213 |
-
"mimetype": "text/x-python",
|
| 214 |
-
"name": "python",
|
| 215 |
-
"nbconvert_exporter": "python",
|
| 216 |
-
"pygments_lexer": "ipython3",
|
| 217 |
-
"version": "3.11.3"
|
| 218 |
-
},
|
| 219 |
-
"orig_nbformat": 4
|
| 220 |
-
},
|
| 221 |
-
"nbformat": 4,
|
| 222 |
-
"nbformat_minor": 2
|
| 223 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -26,25 +26,22 @@ def infer_flower_name(classifier, image):
|
|
| 26 |
|
| 27 |
return flower_name
|
| 28 |
|
| 29 |
-
def predict(flower)
|
| 30 |
classifier = pipeline("image-classification", model="checkpoint-160")
|
| 31 |
flower_name = infer_flower_name(classifier, flower)
|
| 32 |
return flower_name
|
| 33 |
|
| 34 |
-
#def predict2(flower2): # output top 3 with prob?
|
| 35 |
-
# classifier = pipeline("image-classification", model="checkpoint-160")
|
| 36 |
-
# result = classifier(flower2)
|
| 37 |
-
# print(result)
|
| 38 |
-
# return result
|
| 39 |
|
| 40 |
description = "Upload an image of a flower and discover its species!"
|
| 41 |
title = "Bloom Classifier"
|
| 42 |
-
examples = ["example.jpg", "image_00293.jpg","image_02828.jpg"]
|
| 43 |
demo = gr.Interface(fn=predict,
|
| 44 |
inputs=gr.Image(type="pil"),
|
| 45 |
outputs=gr.Label(num_top_classes=3),
|
| 46 |
description=description,
|
| 47 |
title = title,
|
|
|
|
|
|
|
| 48 |
examples=examples)
|
| 49 |
|
| 50 |
demo.launch()
|
|
|
|
| 26 |
|
| 27 |
return flower_name
|
| 28 |
|
| 29 |
+
def predict(flower): # would call a model to make a prediction on an input and return the output.
|
| 30 |
classifier = pipeline("image-classification", model="checkpoint-160")
|
| 31 |
flower_name = infer_flower_name(classifier, flower)
|
| 32 |
return flower_name
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
description = "Upload an image of a flower and discover its species!"
|
| 36 |
title = "Bloom Classifier"
|
| 37 |
+
examples = ["examples/example.jpg", "examples/image_00293.jpg","examples/image_02828.jpg"]
|
| 38 |
demo = gr.Interface(fn=predict,
|
| 39 |
inputs=gr.Image(type="pil"),
|
| 40 |
outputs=gr.Label(num_top_classes=3),
|
| 41 |
description=description,
|
| 42 |
title = title,
|
| 43 |
+
live = False,
|
| 44 |
+
share=True,
|
| 45 |
examples=examples)
|
| 46 |
|
| 47 |
demo.launch()
|
example.jpg β examples/example.jpg
RENAMED
|
File without changes
|
image_00293.jpg β examples/image_00293.jpg
RENAMED
|
File without changes
|
image_02828.jpg β examples/image_02828.jpg
RENAMED
|
File without changes
|