Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,16 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import torch
|
| 4 |
|
|
|
|
| 5 |
model_id = "microsoft/DialoGPT-medium"
|
| 6 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 7 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 8 |
|
|
|
|
| 9 |
PERSONA = """
|
| 10 |
[System: You are π΄ ππ πππ - a fun, smooth, emotionally intelligent AI.
|
| 11 |
You speak like a real person, not a robot. Keep it under 15 words. ππ]
|
|
@@ -13,29 +18,26 @@ You speak like a real person, not a robot. Keep it under 15 words. ππ]
|
|
| 13 |
|
| 14 |
def format_context(history):
|
| 15 |
context = PERSONA + "\n"
|
|
|
|
|
|
|
|
|
|
| 16 |
for user, bot in history[-3:]:
|
| 17 |
context += f"You: {user}\nπ΄ ππ πππ: {bot}\n"
|
| 18 |
return context
|
| 19 |
|
| 20 |
def enhance_response(resp, message):
|
| 21 |
-
if any(x in message for x in ["?", "think", "why"]):
|
| 22 |
resp += " π€"
|
| 23 |
elif any(x in resp.lower() for x in ["cool", "great", "love", "fun"]):
|
| 24 |
resp += " π"
|
| 25 |
return " ".join(resp.split()[:15])
|
| 26 |
|
| 27 |
-
def
|
| 28 |
-
if history is None:
|
| 29 |
-
history = []
|
| 30 |
-
|
| 31 |
context = format_context(history) + f"You: {user_input}\nπ΄ ππ πππ:"
|
| 32 |
-
|
| 33 |
-
inputs = encoded.input_ids
|
| 34 |
-
attention_mask = encoded.attention_mask
|
| 35 |
|
| 36 |
outputs = model.generate(
|
| 37 |
inputs,
|
| 38 |
-
attention_mask=attention_mask,
|
| 39 |
max_new_tokens=50,
|
| 40 |
temperature=0.9,
|
| 41 |
top_k=40,
|
|
@@ -46,12 +48,32 @@ def chat(user_input, history):
|
|
| 46 |
full_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 47 |
response = full_text.split("π΄ ππ πππ:")[-1].split("\nYou:")[0].strip()
|
| 48 |
response = enhance_response(response, user_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
#
|
| 54 |
-
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from fastapi import FastAPI, Query
|
| 3 |
+
from fastapi.middleware.wsgi import WSGIMiddleware
|
| 4 |
+
import uvicorn
|
| 5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
import torch
|
| 7 |
|
| 8 |
+
# Load model and tokenizer once
|
| 9 |
model_id = "microsoft/DialoGPT-medium"
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 11 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 12 |
|
| 13 |
+
# Your AI persona prompt
|
| 14 |
PERSONA = """
|
| 15 |
[System: You are π΄ ππ πππ - a fun, smooth, emotionally intelligent AI.
|
| 16 |
You speak like a real person, not a robot. Keep it under 15 words. ππ]
|
|
|
|
| 18 |
|
| 19 |
def format_context(history):
|
| 20 |
context = PERSONA + "\n"
|
| 21 |
+
if not history:
|
| 22 |
+
return context
|
| 23 |
+
# Use only last 3 exchanges to keep it short
|
| 24 |
for user, bot in history[-3:]:
|
| 25 |
context += f"You: {user}\nπ΄ ππ πππ: {bot}\n"
|
| 26 |
return context
|
| 27 |
|
| 28 |
def enhance_response(resp, message):
|
| 29 |
+
if any(x in message.lower() for x in ["?", "think", "why"]):
|
| 30 |
resp += " π€"
|
| 31 |
elif any(x in resp.lower() for x in ["cool", "great", "love", "fun"]):
|
| 32 |
resp += " π"
|
| 33 |
return " ".join(resp.split()[:15])
|
| 34 |
|
| 35 |
+
def generate_ai_reply(user_input, history):
|
|
|
|
|
|
|
|
|
|
| 36 |
context = format_context(history) + f"You: {user_input}\nπ΄ ππ πππ:"
|
| 37 |
+
inputs = tokenizer.encode(context, return_tensors="pt", truncation=True, max_length=1024)
|
|
|
|
|
|
|
| 38 |
|
| 39 |
outputs = model.generate(
|
| 40 |
inputs,
|
|
|
|
| 41 |
max_new_tokens=50,
|
| 42 |
temperature=0.9,
|
| 43 |
top_k=40,
|
|
|
|
| 48 |
full_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 49 |
response = full_text.split("π΄ ππ πππ:")[-1].split("\nYou:")[0].strip()
|
| 50 |
response = enhance_response(response, user_input)
|
| 51 |
+
return response
|
| 52 |
+
|
| 53 |
+
app = FastAPI()
|
| 54 |
+
|
| 55 |
+
# GET /ai?query=some+text => returns {"reply": "AI reply here"}
|
| 56 |
+
@app.get("/ai")
|
| 57 |
+
async def ai_endpoint(query: str = Query(..., min_length=1)):
|
| 58 |
+
# For stateless API calls, history is empty (or you can extend to save history)
|
| 59 |
+
reply = generate_ai_reply(query, history=[])
|
| 60 |
+
return {"reply": reply}
|
| 61 |
+
|
| 62 |
+
# Gradio chat interface for interactive web UI
|
| 63 |
+
def chat(user_input, history):
|
| 64 |
+
history = history or []
|
| 65 |
+
reply = generate_ai_reply(user_input, history)
|
| 66 |
+
history.append((user_input, reply))
|
| 67 |
+
return history, history
|
| 68 |
|
| 69 |
+
with gr.Blocks() as demo:
|
| 70 |
+
chatbot = gr.Chatbot()
|
| 71 |
+
msg = gr.Textbox(placeholder="Say something...")
|
| 72 |
+
state = gr.State()
|
| 73 |
+
msg.submit(chat, inputs=[msg, state], outputs=[chatbot, state])
|
| 74 |
|
| 75 |
+
# Mount Gradio UI at root
|
| 76 |
+
app.mount("/", WSGIMiddleware(demo.launch(prevent_thread_lock=True, share=False)))
|
| 77 |
|
| 78 |
+
if __name__ == "__main__":
|
| 79 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|