from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import gradio as gr # Load model and tokenizer model_name = "valhalla/t5-small-qg-hl" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # Function to generate question def generate_question(context, answer): if not context.strip() or not answer.strip(): return "Please enter both context and answer." input_text = f"generate question: {context.replace(answer, ' ' + answer + ' ')}" inputs = tokenizer.encode(input_text, return_tensors="pt") outputs = model.generate(inputs, max_length=64, num_beams=4, early_stopping=True) question = tokenizer.decode(outputs[0], skip_special_tokens=True) return question # Gradio interface iface = gr.Interface( fn=generate_question, inputs=[ gr.Textbox(lines=5, label="Context or Paragraph"), gr.Textbox(lines=1, label="Answer (highlighted text)") ], outputs="text", title="🧠 AI Question Generator", description="Enter a paragraph and the answer you want highlighted. The app generates a relevant question." ) if __name__ == "__main__": iface.launch(server_name="0.0.0.0", server_port=7860)