File size: 1,681 Bytes
faa1908
643a4b9
faa1908
643a4b9
 
 
 
 
 
 
 
 
 
 
 
 
cc46459
643a4b9
 
 
 
 
 
cc46459
643a4b9
 
 
 
 
 
 
aa75746
643a4b9
 
 
 
faa1908
643a4b9
492454c
 
 
 
 
643a4b9
 
 
 
492454c
 
 
46e2879
643a4b9
492454c
 
 
643a4b9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

# Load model and tokenizer (CPU only)
tokenizer = AutoTokenizer.from_pretrained("unsloth/qwen2.5-math-1.5b")
model = AutoModelForCausalLM.from_pretrained(
    "unsloth/qwen2.5-math-1.5b",
    device_map="cpu"  # forces CPU
)

generator = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    device=-1  # CPU
)

# Gradio response function
def respond(message, history, system_message, max_tokens, temperature, top_p):
    full_prompt = f"{system_message}\n"
    for h in history:
        full_prompt += f"User: {h['user']}\nBot: {h['bot']}\n"
    full_prompt += f"User: {message}\nBot:"

    output = generator(
        full_prompt,
        max_new_tokens=max_tokens,
        do_sample=True,
        temperature=temperature,
        top_p=top_p
    )[0]["generated_text"]

    # Extract the new bot response only
    bot_response = output[len(full_prompt):].strip()
    history.append({"user": message, "bot": bot_response})
    return history, history

# Chat interface
chatbot = gr.ChatInterface(
    respond,
    type="messages",
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=512, value=256, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)"),
    ]
)

with gr.Blocks() as demo:
    with gr.Sidebar():
        gr.LoginButton()
    chatbot.render()

if __name__ == "__main__":
    demo.launch()