VV / app.py
Vivek16's picture
Update app.py
cc46459 verified
raw
history blame
2.32 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
from peft import PeftModel
import torch
# -----------------------------
# Load 4-bit Qwen model locally
# -----------------------------
MODEL_NAME = "unsloth/qwen2.5-math-1.5b-bnb-4bit"
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False)
print("Loading model in 4-bit...")
base_model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map="auto",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
# Check if LoRA adapter exists
try:
model = PeftModel.from_pretrained(base_model, MODEL_NAME, device_map="auto")
except:
model = base_model
model.eval()
# -----------------------------
# Respond function
# -----------------------------
def respond(message, history, system_message, max_tokens, temperature, top_p):
# Build chat prompt
prompt = system_message + "\n"
for h in history:
prompt += f"User: {h['content']}\n"
prompt += f"User: {message}\nBot:"
# Tokenize
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generation config
gen_config = GenerationConfig(
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True
)
# Generate output
with torch.no_grad():
output_ids = model.generate(**inputs, **gen_config.to_dict())
output = tokenizer.decode(output_ids[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
return output
# -----------------------------
# Gradio Chat Interface
# -----------------------------
chatbot = gr.ChatInterface(
respond,
type="messages",
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
with gr.Blocks() as demo:
chatbot.render()
# -----------------------------
# Launch Gradio app
# -----------------------------
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)