Update app.py
Browse files
app.py
CHANGED
|
@@ -4,29 +4,25 @@ from peft import PeftModel
|
|
| 4 |
import torch
|
| 5 |
|
| 6 |
# -----------------------------
|
| 7 |
-
#
|
| 8 |
# -----------------------------
|
| 9 |
-
MODEL_NAME = "
|
| 10 |
|
| 11 |
print("Loading tokenizer...")
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False)
|
| 13 |
|
| 14 |
-
print("Loading model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
try:
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
dtype=torch.float16, # newer transformers prefers dtype
|
| 20 |
-
low_cpu_mem_usage=True
|
| 21 |
-
)
|
| 22 |
-
# Load LoRA adapter if exists
|
| 23 |
-
try:
|
| 24 |
-
model = PeftModel.from_pretrained(base_model, MODEL_NAME, device_map="auto")
|
| 25 |
-
except:
|
| 26 |
-
model = base_model
|
| 27 |
-
except Exception as e:
|
| 28 |
-
print("Error loading model:", e)
|
| 29 |
-
raise e
|
| 30 |
|
| 31 |
model.eval()
|
| 32 |
|
|
@@ -34,7 +30,7 @@ model.eval()
|
|
| 34 |
# Response function
|
| 35 |
# -----------------------------
|
| 36 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
| 37 |
-
# Limit max tokens for safety
|
| 38 |
if max_tokens > 128:
|
| 39 |
max_tokens = 128
|
| 40 |
|
|
@@ -44,7 +40,7 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
| 44 |
prompt += f"User: {h['content']}\n"
|
| 45 |
prompt += f"User: {message}\nBot:"
|
| 46 |
|
| 47 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
| 48 |
|
| 49 |
gen_config = GenerationConfig(
|
| 50 |
max_new_tokens=max_tokens,
|
|
@@ -66,7 +62,7 @@ chatbot = gr.ChatInterface(
|
|
| 66 |
type="messages",
|
| 67 |
additional_inputs=[
|
| 68 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 69 |
-
gr.Slider(minimum=1, maximum=
|
| 70 |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
| 71 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
| 72 |
],
|
|
@@ -77,3 +73,4 @@ with gr.Blocks() as demo:
|
|
| 77 |
|
| 78 |
if __name__ == "__main__":
|
| 79 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
|
| 6 |
# -----------------------------
|
| 7 |
+
# CPU-friendly model
|
| 8 |
# -----------------------------
|
| 9 |
+
MODEL_NAME = "tiiuae/falcon-7b-instruct" # smaller CPU-friendly model
|
| 10 |
|
| 11 |
print("Loading tokenizer...")
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False)
|
| 13 |
|
| 14 |
+
print("Loading model...")
|
| 15 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 16 |
+
MODEL_NAME,
|
| 17 |
+
device_map=None, # CPU only
|
| 18 |
+
torch_dtype=torch.float32
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
# Load LoRA if exists (optional)
|
| 22 |
try:
|
| 23 |
+
model = PeftModel.from_pretrained(base_model, MODEL_NAME, device_map=None)
|
| 24 |
+
except:
|
| 25 |
+
model = base_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
model.eval()
|
| 28 |
|
|
|
|
| 30 |
# Response function
|
| 31 |
# -----------------------------
|
| 32 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
| 33 |
+
# Limit max tokens for CPU safety
|
| 34 |
if max_tokens > 128:
|
| 35 |
max_tokens = 128
|
| 36 |
|
|
|
|
| 40 |
prompt += f"User: {h['content']}\n"
|
| 41 |
prompt += f"User: {message}\nBot:"
|
| 42 |
|
| 43 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 44 |
|
| 45 |
gen_config = GenerationConfig(
|
| 46 |
max_new_tokens=max_tokens,
|
|
|
|
| 62 |
type="messages",
|
| 63 |
additional_inputs=[
|
| 64 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 65 |
+
gr.Slider(minimum=1, maximum=128, value=64, step=1, label="Max new tokens"),
|
| 66 |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
| 67 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
| 68 |
],
|
|
|
|
| 73 |
|
| 74 |
if __name__ == "__main__":
|
| 75 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
| 76 |
+
|