Spaces:
Runtime error
Runtime error
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
| import argparse | |
| def generate_prompt(question, prompt_file="prompt.md", metadata_file="metadata.sql"): | |
| with open(prompt_file, "r") as f: | |
| prompt = f.read() | |
| with open(metadata_file, "r") as f: | |
| table_metadata_string = f.read() | |
| prompt = prompt.format( | |
| user_question=question, table_metadata_string=table_metadata_string | |
| ) | |
| return prompt | |
| def get_tokenizer_model(model_name): | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16, | |
| device_map="auto", | |
| use_cache=True, | |
| ) | |
| return tokenizer, model | |
| def run_inference(question, prompt_file="prompt.md", metadata_file="metadata.sql"): | |
| tokenizer, model = get_tokenizer_model("defog/sqlcoder-34b-alpha") | |
| prompt = generate_prompt(question, prompt_file, metadata_file) | |
| # make sure the model stops generating at triple ticks | |
| # eos_token_id = tokenizer.convert_tokens_to_ids(["```"])[0] | |
| eos_token_id = tokenizer.eos_token_id | |
| pipe = pipeline( | |
| "text-generation", | |
| model=model, | |
| tokenizer=tokenizer, | |
| max_new_tokens=300, | |
| do_sample=False, | |
| num_beams=5, # do beam search with 5 beams for high quality results | |
| ) | |
| generated_query = ( | |
| pipe( | |
| prompt, | |
| num_return_sequences=1, | |
| eos_token_id=eos_token_id, | |
| pad_token_id=eos_token_id, | |
| )[0]["generated_text"] | |
| .split("```sql")[-1] | |
| .split("```")[0] | |
| .split(";")[0] | |
| .strip() | |
| + ";" | |
| ) | |
| return generated_query | |
| if __name__ == "__main__": | |
| # Parse arguments | |
| parser = argparse.ArgumentParser(description="Run inference on a question") | |
| parser.add_argument("-q","--question", type=str, help="Question to run inference on") | |
| args = parser.parse_args() | |
| question = args.question | |
| print("Loading a model and generating a SQL query for answering your question...") | |
| print(run_inference(question)) | |