File size: 15,720 Bytes
04ef51d 38d82b1 04ef51d 3d09d18 e281c43 3d09d18 04ef51d 38d82b1 04ef51d 38d82b1 04ef51d 38d82b1 04ef51d 3d09d18 38d82b1 04ef51d 38d82b1 04ef51d 3d09d18 04ef51d 3d09d18 04ef51d 3d09d18 04ef51d 38d82b1 04ef51d 38d82b1 04ef51d 38d82b1 04ef51d 3c66ead 04ef51d 38d82b1 04ef51d 38d82b1 04ef51d 3d09d18 04ef51d 3c66ead 04ef51d 38d82b1 e281c43 3d09d18 3c66ead 38d82b1 3c66ead 38d82b1 3d09d18 04ef51d 38d82b1 3d09d18 04ef51d 38d82b1 3d09d18 04ef51d 3d09d18 e281c43 3d09d18 04ef51d 3d09d18 04ef51d 3d09d18 38d82b1 3d09d18 04ef51d 3d09d18 04ef51d 3d09d18 04ef51d 38d82b1 04ef51d e281c43 04ef51d 3d09d18 04ef51d 3d09d18 04ef51d 3d09d18 38d82b1 04ef51d 3d09d18 04ef51d 3d09d18 04ef51d 3d09d18 04ef51d 3d09d18 04ef51d 3d09d18 04ef51d 3d09d18 04ef51d 3d09d18 04ef51d 3d09d18 04ef51d 38d82b1 04ef51d 3d09d18 04ef51d 3d09d18 38d82b1 3d09d18 04ef51d 38d82b1 04ef51d 3d09d18 04ef51d 3d09d18 04ef51d 38d82b1 3d09d18 38d82b1 3d09d18 04ef51d 38d82b1 04ef51d 3d09d18 04ef51d 3d09d18 04ef51d 3d09d18 38d82b1 3d09d18 38d82b1 04ef51d 38d82b1 04ef51d 3d09d18 04ef51d 38d82b1 3d09d18 04ef51d 38d82b1 3c66ead 38d82b1 3d09d18 e281c43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
"""
ZEN Dual-Engine AI — GPT-5 (OpenAI) + Nano-Banana (Gemini)
Gradio 5.49.1 Space with in-UI API keys, chat history, optional image (Gemini),
telemetry, starter prompts, and robust OpenAI param fallbacks.
Key robustness:
- Auto-retry OpenAI call with `max_completion_tokens` if model rejects `max_tokens`.
- Auto-retry OpenAI call without `temperature` if model only allows the default.
- Clean Gradio 5.49.1 queue usage (no deprecated args).
"""
import os
import time
import base64
from io import BytesIO
from typing import List, Tuple, Dict, Any
import gradio as gr
# -----------------------------
# Constants & Defaults
# -----------------------------
APP_TITLE = "🔮 ZEN Dual-Engine AI — GPT-5 + Nano-Banana"
DEFAULT_OPENAI_MODEL = "gpt-5" # Adjust if your account uses a different label
DEFAULT_GEMINI_MODEL = "gemini-2.5-nano-banana"
SYSTEM_DEFAULT = (
"You are ZEN Assistant. Respond concisely, accurately, and helpfully. "
"If an image is provided, analyze it clearly. Avoid unsafe advice."
)
STARTER_PROMPTS: List[str] = [
"💡 Brainstorm 7 AI-powered product ideas that tackle youth education gaps.",
"📚 Draft a 4-week AI literacy micro-curriculum with hands-on labs.",
"🧪 Design an experiment to compare GPT-5 vs Nano-Banana on code generation.",
"🎨 Describe a museum exhibit that visualizes the history of AI in America.",
"🛠️ Generate a Python function that converts a PDF to clean Markdown.",
"🪐 Write a sci-fi scene about a student building an AI on the Moon.",
"🔍 Summarize the pros/cons of agentic workflows for startups.",
"📈 Propose a metrics dashboard for measuring AI program impact.",
]
# Very light guardrail against trivial injection/script pastes
BLOCKLIST = ["<script", "</script>", "{{", "}}"]
# -----------------------------
# Lazy Imports (boot even if SDKs are missing)
# -----------------------------
def _lazy_import_openai():
try:
from openai import OpenAI # openai>=1.0 interface
return OpenAI
except Exception as e:
raise RuntimeError(f"OpenAI SDK not available: {e}")
def _lazy_import_gemini():
try:
import google.generativeai as genai
return genai
except Exception as e:
raise RuntimeError(f"Google Generative AI SDK not available: {e}")
# -----------------------------
# Utilities
# -----------------------------
def is_blocked(text: str) -> bool:
if not text:
return False
low = text.lower()
return any(tok in low for tok in BLOCKLIST)
def pil_to_base64(image) -> str:
"""Convert PIL image to base64 JPEG (if you ever need raw bytes)."""
buffer = BytesIO()
image.convert("RGB").save(buffer, format="JPEG", quality=92)
return base64.b64encode(buffer.getvalue()).decode("utf-8")
def approx_tokens_from_chars(text: str) -> int:
return int(len(text or "") / 4)
def estimate_cost(provider_label: str, model: str, prompt: str, reply: str) -> float:
"""
Super rough illustrative CPMs. Adjust to your billing reality.
"""
toks = approx_tokens_from_chars(prompt) + approx_tokens_from_chars(reply)
if provider_label.startswith("OpenAI"):
return round(toks / 1_000_000.0 * 7.5, 4) # illustrative
return round(toks / 1_000_000.0 * 5.0, 4) # illustrative
# -----------------------------
# Providers
# -----------------------------
def call_openai_chat(
api_key: str,
model: str,
system_prompt: str,
history_messages: List[Dict[str, str]],
user_message: str,
temperature: float,
max_tokens: int,
) -> str:
"""
Calls OpenAI Chat Completions with adaptive parameter handling:
- If model rejects `max_tokens`, retry with `max_completion_tokens`.
- If model rejects non-default `temperature`, retry omitting temperature (server default).
"""
OpenAI = _lazy_import_openai()
client = OpenAI(api_key=api_key)
messages = [{"role": "system", "content": (system_prompt.strip() or SYSTEM_DEFAULT)}]
messages.extend(history_messages or [])
messages.append({"role": "user", "content": user_message})
base_kwargs = dict(
model=(model.strip() or DEFAULT_OPENAI_MODEL),
messages=messages,
)
# Try #1: legacy `max_tokens` + provided temperature
try:
kwargs_try = dict(base_kwargs)
kwargs_try["temperature"] = float(temperature)
kwargs_try["max_tokens"] = int(max_tokens)
resp = client.chat.completions.create(**kwargs_try)
return resp.choices[0].message.content
except Exception as e1:
msg1 = str(e1)
# If model wants `max_completion_tokens`
needs_mct = ("max_tokens" in msg1 and "max_completion_tokens" in msg1) or "Unsupported parameter" in msg1
# If model wants default temperature only
temp_default_only = ("temperature" in msg1) and ("unsupported_value" in msg1 or "Only the default" in msg1)
# Path A: fix tokens first, keep temperature
if needs_mct and not temp_default_only:
try:
kwargs_try = dict(base_kwargs)
kwargs_try["temperature"] = float(temperature)
kwargs_try["max_completion_tokens"] = int(max_tokens)
resp = client.chat.completions.create(**kwargs_try)
return resp.choices[0].message.content
except Exception as e2:
msg2 = str(e2)
# If that new attempt also complains about temperature, handle below
temp_default_only = ("temperature" in msg2) and ("unsupported_value" in msg2 or "Only the default" in msg2)
# Path B: fix temperature only (omit it), keep legacy tokens
if temp_default_only and not needs_mct:
try:
kwargs_try = dict(base_kwargs)
kwargs_try["max_tokens"] = int(max_tokens)
resp = client.chat.completions.create(**kwargs_try)
return resp.choices[0].message.content
except Exception as e3:
msg3 = str(e3)
# If now it also wants max_completion_tokens, do both
needs_mct = ("max_tokens" in msg3 and "max_completion_tokens" in msg3) or "Unsupported parameter" in msg3
# Path C: needs both fixes (no temperature + max_completion_tokens)
if needs_mct and temp_default_only:
kwargs_try = dict(base_kwargs)
kwargs_try["max_completion_tokens"] = int(max_tokens)
resp = client.chat.completions.create(**kwargs_try) # omit temperature
return resp.choices[0].message.content
# If none matched, re-raise original error
raise
def call_gemini_generate(
api_key: str,
model: str,
system_prompt: str,
user_message: str,
image=None,
temperature: float = 0.4,
) -> str:
"""
Calls Gemini (including Nano-Banana variants). Supports optional PIL image.
"""
genai = _lazy_import_gemini()
genai.configure(api_key=api_key)
# relaxed demo thresholds; adjust per policy as needed
safety_settings = [
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_SEXUAL_CONTENT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
]
model_obj = genai.GenerativeModel(
model_name=(model.strip() or DEFAULT_GEMINI_MODEL),
system_instruction=(system_prompt.strip() or SYSTEM_DEFAULT),
safety_settings=safety_settings,
generation_config={"temperature": float(temperature)},
)
parts: List[Any] = [user_message or ""]
if image is not None:
parts.append(image) # PIL image supported directly
resp = model_obj.generate_content(parts)
if hasattr(resp, "text") and resp.text:
return resp.text
cand = getattr(resp, "candidates", None)
if cand and getattr(cand[0], "content", None):
parts = getattr(cand[0].content, "parts", None)
if parts and hasattr(parts[0], "text"):
return parts[0].text
return "(No response text returned.)"
# -----------------------------
# Orchestration
# -----------------------------
def to_openai_history(gradio_history: List[Tuple[str, str]]) -> List[Dict[str, str]]:
"""
Convert Gradio Chatbot history ([(user, assistant), ...]) to OpenAI role format.
"""
oai: List[Dict[str, str]] = []
for user_msg, ai_msg in gradio_history or []:
if user_msg:
oai.append({"role": "user", "content": user_msg})
if ai_msg:
oai.append({"role": "assistant", "content": ai_msg})
return oai
def infer(
provider_label: str,
openai_key: str,
google_key: str,
model_name: str,
system_prompt: str,
user_message: str,
image,
temperature: float,
max_tokens: int,
history: List[Tuple[str, str]],
):
"""
Main inference entry: routes to OpenAI or Gemini, measures latency, estimates cost,
and appends the turn to the chat history.
"""
if not (user_message and user_message.strip()):
raise gr.Error("Please enter a prompt (or pick a starter prompt).")
if is_blocked(user_message):
assistant = "Request blocked by safety policy. Please rephrase."
history = history or []
history.append((user_message, assistant))
return history, 0, 0.0
t0 = time.time()
history = history or []
if provider_label.startswith("OpenAI"):
api_key = (openai_key or "").strip()
if not api_key:
raise gr.Error("Enter your OpenAI API key in the Settings accordion.")
oai_history = to_openai_history(history)
reply = call_openai_chat(
api_key=api_key,
model=model_name or DEFAULT_OPENAI_MODEL,
system_prompt=system_prompt or SYSTEM_DEFAULT,
history_messages=oai_history,
user_message=user_message,
temperature=temperature,
max_tokens=max_tokens,
)
else:
api_key = (google_key or "").strip()
if not api_key:
raise gr.Error("Enter your Google Gemini API key in the Settings accordion.")
reply = call_gemini_generate(
api_key=api_key,
model=model_name or DEFAULT_GEMINI_MODEL,
system_prompt=system_prompt or SYSTEM_DEFAULT,
user_message=user_message,
image=image,
temperature=temperature,
)
latency_ms = int((time.time() - t0) * 1000)
cost_est = estimate_cost(provider_label, model_name, user_message, reply)
history.append((user_message, reply))
return history, latency_ms, cost_est
# -----------------------------
# UI
# -----------------------------
with gr.Blocks(fill_height=True, theme=gr.themes.Soft(), title="ZEN Dual-Engine AI") as demo:
gr.Markdown("# " + APP_TITLE)
gr.Markdown(
"Pick your engine, paste your API key(s), and start creating. "
"Keys entered here are **session-only**. For permanent use, set **Space Secrets**."
)
with gr.Row():
with gr.Column(scale=3, min_width=380):
provider = gr.Radio(
["OpenAI (GPT-5)", "Google (Nano-Banana)"],
value="OpenAI (GPT-5)",
label="Engine"
)
model_name = gr.Textbox(
label="Model name",
value=DEFAULT_OPENAI_MODEL,
placeholder=f"e.g., {DEFAULT_OPENAI_MODEL} or {DEFAULT_GEMINI_MODEL}"
)
system_prompt = gr.Textbox(
label="System prompt",
value=SYSTEM_DEFAULT,
lines=3,
info="Controls assistant behavior/persona."
)
with gr.Accordion("🔑 Settings • Bring Your Own Keys (session-only)", open=True):
openai_api_key = gr.Textbox(
label="OPENAI_API_KEY (for GPT-5 path)",
type="password",
placeholder="sk-..."
)
google_api_key = gr.Textbox(
label="GOOGLE_API_KEY (for Nano-Banana path)",
type="password",
placeholder="AIza..."
)
gr.Markdown(
"You can also add `OPENAI_API_KEY` and `GOOGLE_API_KEY` in the Space **Repository Secrets**."
)
user_message = gr.Textbox(
label="Your prompt",
placeholder="Ask anything… or pick a starter prompt below.",
lines=5
)
with gr.Row():
temperature = gr.Slider(
0.0, 1.0, value=0.5, step=0.05,
label="Temperature (some OpenAI models ignore non-default)"
)
max_tokens = gr.Slider(
128, 4096, value=1024, step=64,
label="Max completion tokens (OpenAI path)"
)
with gr.Row():
send = gr.Button("🚀 Generate", variant="primary")
clear = gr.Button("🧹 Clear chat")
with gr.Column(scale=4, min_width=480):
chat = gr.Chatbot(
label="Conversation",
height=440,
type="messages", # OpenAI-style roles internally
avatar_images=(None, None),
)
with gr.Row():
latency = gr.Number(label="Latency (ms)", interactive=False)
cost = gr.Number(label="Est. cost (USD)", interactive=False)
with gr.Accordion("🖼️ Optional: Image (Gemini path supports vision)", open=False):
image = gr.Image(
label="Upload image for analysis (used only on Google/Gemini path)",
type="pil"
)
with gr.Accordion("✨ Starter Prompts", open=True):
starters = gr.Dataset(
components=[gr.Textbox(visible=False)],
samples=[[p] for p in STARTER_PROMPTS],
type="index",
label="Click a row to load a starter prompt into the input."
)
gr.Markdown(
"- Try the same prompt on both engines and compare.\n"
"- Safety: blocks obvious injection/script patterns."
)
# -------------------------
# Events
# -------------------------
def on_starter_select(evt: gr.SelectData):
idx = evt.index
if isinstance(idx, (list, tuple)):
idx = idx[0]
try:
return STARTER_PROMPTS[int(idx)]
except Exception:
return STARTER_PROMPTS[0]
starters.select(on_starter_select, outputs=[user_message])
def on_send(provider, oai_key, g_key, model, sys, msg, img, temp, maxtok, hist):
return infer(provider, oai_key, g_key, model, sys, msg, img, float(temp), int(maxtok), hist)
send.click(
on_send,
inputs=[
provider, openai_api_key, google_api_key, model_name, system_prompt,
user_message, image, temperature, max_tokens, chat
],
outputs=[chat, latency, cost],
show_progress="minimal"
)
def on_clear():
return [], 0, 0.0, None, ""
clear.click(on_clear, outputs=[chat, latency, cost, image, user_message])
# -----------------------------
# Main
# -----------------------------
if __name__ == "__main__":
demo.queue(max_size=64).launch()
|