Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,17 @@
|
|
| 1 |
import base64
|
| 2 |
import io
|
| 3 |
-
import os
|
| 4 |
from typing import List, Tuple, Optional
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
from PIL import Image
|
| 8 |
|
|
|
|
| 9 |
# -----------------------
|
| 10 |
-
#
|
| 11 |
# -----------------------
|
| 12 |
|
| 13 |
def _get_openai_client(api_key: str):
|
| 14 |
-
from openai import OpenAI #
|
| 15 |
return OpenAI(api_key=api_key)
|
| 16 |
|
| 17 |
|
|
@@ -22,7 +22,7 @@ def _configure_google(api_key: str):
|
|
| 22 |
|
| 23 |
|
| 24 |
# -----------------------
|
| 25 |
-
#
|
| 26 |
# -----------------------
|
| 27 |
|
| 28 |
def apply_preset_to_prompt(
|
|
@@ -31,7 +31,6 @@ def apply_preset_to_prompt(
|
|
| 31 |
style: str,
|
| 32 |
content_type: str,
|
| 33 |
) -> str:
|
| 34 |
-
"""Augment the prompt with preset & style language."""
|
| 35 |
base_prompt = base_prompt.strip()
|
| 36 |
|
| 37 |
preset_addons = {
|
|
@@ -68,7 +67,6 @@ def apply_preset_to_prompt(
|
|
| 68 |
"Cinematic": " cinematic lighting, dramatic composition, filmic contrast",
|
| 69 |
}
|
| 70 |
|
| 71 |
-
ct_addon = ""
|
| 72 |
if content_type == "Image":
|
| 73 |
ct_addon = " high-resolution concept art,"
|
| 74 |
elif content_type == "Infographic Spec":
|
|
@@ -76,6 +74,8 @@ def apply_preset_to_prompt(
|
|
| 76 |
" detailed infographic design specification, including layout regions, "
|
| 77 |
"sections, labels, and visual hierarchy,"
|
| 78 |
)
|
|
|
|
|
|
|
| 79 |
|
| 80 |
extra = " ".join(
|
| 81 |
x
|
|
@@ -92,11 +92,12 @@ def apply_preset_to_prompt(
|
|
| 92 |
return f"{base_prompt}, {extra}"
|
| 93 |
else:
|
| 94 |
return extra.strip()
|
|
|
|
| 95 |
return base_prompt or "high quality image"
|
| 96 |
|
| 97 |
|
| 98 |
# -----------------------
|
| 99 |
-
# OpenAI
|
| 100 |
# -----------------------
|
| 101 |
|
| 102 |
def generate_text_openai(
|
|
@@ -105,6 +106,7 @@ def generate_text_openai(
|
|
| 105 |
mode: str,
|
| 106 |
) -> str:
|
| 107 |
client = _get_openai_client(api_key)
|
|
|
|
| 108 |
system_msg = (
|
| 109 |
"You are an expert creator for the ZEN AI ecosystem. "
|
| 110 |
"Write clear, concise, high-leverage content. "
|
|
@@ -114,7 +116,8 @@ def generate_text_openai(
|
|
| 114 |
|
| 115 |
if mode == "Infographic Spec":
|
| 116 |
user_prompt = (
|
| 117 |
-
|
|
|
|
| 118 |
"Return:\n"
|
| 119 |
"1) Title options\n"
|
| 120 |
"2) 3–5 main sections\n"
|
|
@@ -125,7 +128,6 @@ def generate_text_openai(
|
|
| 125 |
else:
|
| 126 |
user_prompt = prompt
|
| 127 |
|
| 128 |
-
# Using Chat Completions interface
|
| 129 |
resp = client.chat.completions.create(
|
| 130 |
model="gpt-4.1-mini",
|
| 131 |
messages=[
|
|
@@ -157,7 +159,6 @@ def generate_image_openai(
|
|
| 157 |
) -> List[Image.Image]:
|
| 158 |
client = _get_openai_client(api_key)
|
| 159 |
|
| 160 |
-
# Map size choices to OpenAI-supported ones
|
| 161 |
size_map = {
|
| 162 |
"Square (1024x1024)": "1024x1024",
|
| 163 |
"Portrait (1024x1792)": "1024x1792",
|
|
@@ -172,7 +173,6 @@ def generate_image_openai(
|
|
| 172 |
"quality": quality,
|
| 173 |
"n": n_images,
|
| 174 |
}
|
| 175 |
-
# seed is optional on some models; safe to include conditionally
|
| 176 |
if seed is not None:
|
| 177 |
kwargs["seed"] = seed
|
| 178 |
|
|
@@ -191,7 +191,6 @@ def generate_text_google(
|
|
| 191 |
mode: str,
|
| 192 |
) -> str:
|
| 193 |
genai = _configure_google(api_key)
|
| 194 |
-
# Default to a strong text model
|
| 195 |
model = genai.GenerativeModel("gemini-1.5-pro")
|
| 196 |
|
| 197 |
if mode == "Infographic Spec":
|
|
@@ -221,10 +220,9 @@ def generate_image_google(
|
|
| 221 |
seed: Optional[int],
|
| 222 |
) -> List[Image.Image]:
|
| 223 |
"""
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
This assumes a GenerativeModel that returns inline image data.
|
| 228 |
"""
|
| 229 |
genai = _configure_google(api_key)
|
| 230 |
model = genai.GenerativeModel(google_image_model)
|
|
@@ -232,8 +230,6 @@ def generate_image_google(
|
|
| 232 |
images: List[Image.Image] = []
|
| 233 |
|
| 234 |
for i in range(n_images):
|
| 235 |
-
# Some image models support generation_config with a seed;
|
| 236 |
-
# here we pass it if present.
|
| 237 |
generation_config = {}
|
| 238 |
if seed is not None:
|
| 239 |
generation_config["seed"] = seed + i
|
|
@@ -243,11 +239,12 @@ def generate_image_google(
|
|
| 243 |
generation_config=generation_config or None,
|
| 244 |
)
|
| 245 |
|
| 246 |
-
#
|
| 247 |
-
for cand in resp
|
| 248 |
-
for part in cand
|
| 249 |
-
|
| 250 |
-
|
|
|
|
| 251 |
img = Image.open(io.BytesIO(raw)).convert("RGB")
|
| 252 |
images.append(img)
|
| 253 |
|
|
@@ -255,7 +252,7 @@ def generate_image_google(
|
|
| 255 |
|
| 256 |
|
| 257 |
# -----------------------
|
| 258 |
-
# Core
|
| 259 |
# -----------------------
|
| 260 |
|
| 261 |
def run_generation(
|
|
@@ -273,11 +270,8 @@ def run_generation(
|
|
| 273 |
seed: int,
|
| 274 |
use_seed: bool,
|
| 275 |
google_image_model: str,
|
| 276 |
-
google_text_model_hint: str,
|
| 277 |
) -> Tuple[str, List[Image.Image], str]:
|
| 278 |
-
"""
|
| 279 |
-
Returns: (text_output, images, debug_info)
|
| 280 |
-
"""
|
| 281 |
text_output = ""
|
| 282 |
images: List[Image.Image] = []
|
| 283 |
debug_lines = []
|
|
@@ -285,7 +279,6 @@ def run_generation(
|
|
| 285 |
if not base_prompt.strip():
|
| 286 |
return "Please enter a prompt.", [], "No prompt provided."
|
| 287 |
|
| 288 |
-
# Build full prompt for images
|
| 289 |
content_type = "Image" if task_type == "Image" else task_type
|
| 290 |
full_prompt = apply_preset_to_prompt(
|
| 291 |
base_prompt=base_prompt,
|
|
@@ -300,7 +293,7 @@ def run_generation(
|
|
| 300 |
debug_lines.append(f"Task: {task_type}")
|
| 301 |
debug_lines.append(f"Provider: {provider}")
|
| 302 |
debug_lines.append(f"Preset: {preset}, Style: {style}")
|
| 303 |
-
debug_lines.append(f"OpenAI
|
| 304 |
debug_lines.append(f"Google image model: {google_image_model}")
|
| 305 |
debug_lines.append(f"Google text model hint: {google_text_model_hint}")
|
| 306 |
debug_lines.append(f"Seed enabled: {use_seed}, seed: {seed if use_seed else 'None'}")
|
|
@@ -308,7 +301,7 @@ def run_generation(
|
|
| 308 |
seed_val: Optional[int] = seed if use_seed else None
|
| 309 |
|
| 310 |
try:
|
| 311 |
-
# TEXT
|
| 312 |
if task_type in ["Text", "Infographic Spec"]:
|
| 313 |
if provider == "OpenAI":
|
| 314 |
if not openai_key.strip():
|
|
@@ -332,11 +325,9 @@ def run_generation(
|
|
| 332 |
if provider == "OpenAI":
|
| 333 |
if not openai_key.strip():
|
| 334 |
return "Missing OpenAI API key.", [], "OpenAI key not provided."
|
| 335 |
-
|
| 336 |
-
#
|
| 337 |
-
# but here we assume they want GPT-Image-1 by default
|
| 338 |
image_model = "gpt-image-1"
|
| 339 |
-
# For Palantir/Anduril preset, sometimes DALL·E 3 is good – user can switch later by editing code.
|
| 340 |
if "Palantir" in preset:
|
| 341 |
image_model = "dall-e-3"
|
| 342 |
|
|
@@ -355,7 +346,7 @@ def run_generation(
|
|
| 355 |
return "Missing Google API key.", [], "Google key not provided."
|
| 356 |
images = generate_image_google(
|
| 357 |
api_key=google_key.strip(),
|
| 358 |
-
google_image_model=google_image_model.strip(),
|
| 359 |
prompt=full_prompt,
|
| 360 |
n_images=n_images,
|
| 361 |
seed=seed_val,
|
|
@@ -363,8 +354,8 @@ def run_generation(
|
|
| 363 |
|
| 364 |
if not text_output and task_type == "Image":
|
| 365 |
text_output = (
|
| 366 |
-
"Image(s) generated
|
| 367 |
-
"
|
| 368 |
)
|
| 369 |
|
| 370 |
if not images and task_type == "Image":
|
|
@@ -373,29 +364,31 @@ def run_generation(
|
|
| 373 |
return text_output, images, "\n".join(debug_lines)
|
| 374 |
|
| 375 |
except Exception as e:
|
| 376 |
-
|
|
|
|
| 377 |
|
| 378 |
|
| 379 |
# -----------------------
|
| 380 |
# UI
|
| 381 |
# -----------------------
|
| 382 |
|
| 383 |
-
with gr.Blocks(
|
| 384 |
gr.Markdown(
|
| 385 |
"""
|
| 386 |
# 🧬 ZEN Omni Studio — Text • Images • Infographics
|
| 387 |
|
| 388 |
-
|
| 389 |
|
| 390 |
-
- 🔑
|
| 391 |
-
-
|
| 392 |
-
-
|
| 393 |
"""
|
| 394 |
)
|
| 395 |
|
| 396 |
with gr.Row():
|
| 397 |
with gr.Column():
|
| 398 |
-
gr.Markdown("### 🔐 API Keys (
|
|
|
|
| 399 |
openai_key = gr.Textbox(
|
| 400 |
label="OPENAI_API_KEY",
|
| 401 |
type="password",
|
|
@@ -419,16 +412,15 @@ A unified creator for the ZEN ecosystem.
|
|
| 419 |
label="Primary Provider",
|
| 420 |
)
|
| 421 |
|
| 422 |
-
# Prompt region
|
| 423 |
base_prompt = gr.Textbox(
|
| 424 |
label="Main Prompt",
|
| 425 |
lines=5,
|
| 426 |
-
placeholder="Describe
|
| 427 |
)
|
| 428 |
negative_prompt = gr.Textbox(
|
| 429 |
label="Negative Prompt (optional)",
|
| 430 |
lines=2,
|
| 431 |
-
placeholder="Things to avoid: low-res,
|
| 432 |
)
|
| 433 |
|
| 434 |
with gr.Row():
|
|
@@ -457,8 +449,7 @@ A unified creator for the ZEN ecosystem.
|
|
| 457 |
label="Style Accent",
|
| 458 |
)
|
| 459 |
|
| 460 |
-
|
| 461 |
-
gr.Markdown("### 🎛 OpenAI Image Controls (DALL·E / GPT-Image)")
|
| 462 |
with gr.Row():
|
| 463 |
size = gr.Dropdown(
|
| 464 |
[
|
|
@@ -497,14 +488,14 @@ A unified creator for the ZEN ecosystem.
|
|
| 497 |
|
| 498 |
gr.Markdown("### 🧪 Google Image / Text Model Hints")
|
| 499 |
google_image_model = gr.Textbox(
|
| 500 |
-
label="Google Image Model (default:
|
| 501 |
value="nano-banana-pro",
|
| 502 |
-
placeholder="e.g. nano-banana-pro
|
| 503 |
)
|
| 504 |
google_text_model_hint = gr.Textbox(
|
| 505 |
-
label="Google Text Model Hint
|
| 506 |
value="gemini-1.5-pro",
|
| 507 |
-
placeholder="Used
|
| 508 |
)
|
| 509 |
|
| 510 |
generate_btn = gr.Button("🚀 Generate", variant="primary")
|
|
@@ -515,19 +506,17 @@ A unified creator for the ZEN ecosystem.
|
|
| 515 |
|
| 516 |
gr.Markdown("### 🖼 Image Output")
|
| 517 |
image_gallery = gr.Gallery(
|
| 518 |
-
label="Generated Images",
|
| 519 |
show_label=False,
|
| 520 |
columns=2,
|
| 521 |
height=500,
|
| 522 |
)
|
| 523 |
|
| 524 |
-
gr.Markdown("### 🧾 Debug / Logs
|
| 525 |
debug_output = gr.Textbox(
|
| 526 |
label="Debug Info",
|
| 527 |
lines=10,
|
| 528 |
)
|
| 529 |
|
| 530 |
-
# Wire up callback
|
| 531 |
generate_btn.click(
|
| 532 |
fn=run_generation,
|
| 533 |
inputs=[
|
|
|
|
| 1 |
import base64
|
| 2 |
import io
|
|
|
|
| 3 |
from typing import List, Tuple, Optional
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
+
|
| 9 |
# -----------------------
|
| 10 |
+
# OpenAI + Google helpers
|
| 11 |
# -----------------------
|
| 12 |
|
| 13 |
def _get_openai_client(api_key: str):
|
| 14 |
+
from openai import OpenAI # local import so app still loads if lib missing
|
| 15 |
return OpenAI(api_key=api_key)
|
| 16 |
|
| 17 |
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
# -----------------------
|
| 25 |
+
# Prompt / preset logic
|
| 26 |
# -----------------------
|
| 27 |
|
| 28 |
def apply_preset_to_prompt(
|
|
|
|
| 31 |
style: str,
|
| 32 |
content_type: str,
|
| 33 |
) -> str:
|
|
|
|
| 34 |
base_prompt = base_prompt.strip()
|
| 35 |
|
| 36 |
preset_addons = {
|
|
|
|
| 67 |
"Cinematic": " cinematic lighting, dramatic composition, filmic contrast",
|
| 68 |
}
|
| 69 |
|
|
|
|
| 70 |
if content_type == "Image":
|
| 71 |
ct_addon = " high-resolution concept art,"
|
| 72 |
elif content_type == "Infographic Spec":
|
|
|
|
| 74 |
" detailed infographic design specification, including layout regions, "
|
| 75 |
"sections, labels, and visual hierarchy,"
|
| 76 |
)
|
| 77 |
+
else:
|
| 78 |
+
ct_addon = ""
|
| 79 |
|
| 80 |
extra = " ".join(
|
| 81 |
x
|
|
|
|
| 92 |
return f"{base_prompt}, {extra}"
|
| 93 |
else:
|
| 94 |
return extra.strip()
|
| 95 |
+
|
| 96 |
return base_prompt or "high quality image"
|
| 97 |
|
| 98 |
|
| 99 |
# -----------------------
|
| 100 |
+
# OpenAI text + images
|
| 101 |
# -----------------------
|
| 102 |
|
| 103 |
def generate_text_openai(
|
|
|
|
| 106 |
mode: str,
|
| 107 |
) -> str:
|
| 108 |
client = _get_openai_client(api_key)
|
| 109 |
+
|
| 110 |
system_msg = (
|
| 111 |
"You are an expert creator for the ZEN AI ecosystem. "
|
| 112 |
"Write clear, concise, high-leverage content. "
|
|
|
|
| 116 |
|
| 117 |
if mode == "Infographic Spec":
|
| 118 |
user_prompt = (
|
| 119 |
+
"Create a Palantir/Anduril-level infographic specification based on this topic:\n\n"
|
| 120 |
+
f"{prompt}\n\n"
|
| 121 |
"Return:\n"
|
| 122 |
"1) Title options\n"
|
| 123 |
"2) 3–5 main sections\n"
|
|
|
|
| 128 |
else:
|
| 129 |
user_prompt = prompt
|
| 130 |
|
|
|
|
| 131 |
resp = client.chat.completions.create(
|
| 132 |
model="gpt-4.1-mini",
|
| 133 |
messages=[
|
|
|
|
| 159 |
) -> List[Image.Image]:
|
| 160 |
client = _get_openai_client(api_key)
|
| 161 |
|
|
|
|
| 162 |
size_map = {
|
| 163 |
"Square (1024x1024)": "1024x1024",
|
| 164 |
"Portrait (1024x1792)": "1024x1792",
|
|
|
|
| 173 |
"quality": quality,
|
| 174 |
"n": n_images,
|
| 175 |
}
|
|
|
|
| 176 |
if seed is not None:
|
| 177 |
kwargs["seed"] = seed
|
| 178 |
|
|
|
|
| 191 |
mode: str,
|
| 192 |
) -> str:
|
| 193 |
genai = _configure_google(api_key)
|
|
|
|
| 194 |
model = genai.GenerativeModel("gemini-1.5-pro")
|
| 195 |
|
| 196 |
if mode == "Infographic Spec":
|
|
|
|
| 220 |
seed: Optional[int],
|
| 221 |
) -> List[Image.Image]:
|
| 222 |
"""
|
| 223 |
+
This assumes your Nano-Banana / Nano-Banana-Pro image model in
|
| 224 |
+
Google AI Studio returns inline image bytes in the response.
|
| 225 |
+
Adjust parsing if your model behaves differently.
|
|
|
|
| 226 |
"""
|
| 227 |
genai = _configure_google(api_key)
|
| 228 |
model = genai.GenerativeModel(google_image_model)
|
|
|
|
| 230 |
images: List[Image.Image] = []
|
| 231 |
|
| 232 |
for i in range(n_images):
|
|
|
|
|
|
|
| 233 |
generation_config = {}
|
| 234 |
if seed is not None:
|
| 235 |
generation_config["seed"] = seed + i
|
|
|
|
| 239 |
generation_config=generation_config or None,
|
| 240 |
)
|
| 241 |
|
| 242 |
+
# Extract images from candidates
|
| 243 |
+
for cand in getattr(resp, "candidates", []):
|
| 244 |
+
for part in getattr(cand, "content", {}).parts:
|
| 245 |
+
inline = getattr(part, "inline_data", None)
|
| 246 |
+
if inline and getattr(inline, "data", None):
|
| 247 |
+
raw = base64.b64decode(inline.data)
|
| 248 |
img = Image.open(io.BytesIO(raw)).convert("RGB")
|
| 249 |
images.append(img)
|
| 250 |
|
|
|
|
| 252 |
|
| 253 |
|
| 254 |
# -----------------------
|
| 255 |
+
# Core callback
|
| 256 |
# -----------------------
|
| 257 |
|
| 258 |
def run_generation(
|
|
|
|
| 270 |
seed: int,
|
| 271 |
use_seed: bool,
|
| 272 |
google_image_model: str,
|
| 273 |
+
google_text_model_hint: str, # currently just logged
|
| 274 |
) -> Tuple[str, List[Image.Image], str]:
|
|
|
|
|
|
|
|
|
|
| 275 |
text_output = ""
|
| 276 |
images: List[Image.Image] = []
|
| 277 |
debug_lines = []
|
|
|
|
| 279 |
if not base_prompt.strip():
|
| 280 |
return "Please enter a prompt.", [], "No prompt provided."
|
| 281 |
|
|
|
|
| 282 |
content_type = "Image" if task_type == "Image" else task_type
|
| 283 |
full_prompt = apply_preset_to_prompt(
|
| 284 |
base_prompt=base_prompt,
|
|
|
|
| 293 |
debug_lines.append(f"Task: {task_type}")
|
| 294 |
debug_lines.append(f"Provider: {provider}")
|
| 295 |
debug_lines.append(f"Preset: {preset}, Style: {style}")
|
| 296 |
+
debug_lines.append(f"OpenAI size: {size}, quality: {quality}")
|
| 297 |
debug_lines.append(f"Google image model: {google_image_model}")
|
| 298 |
debug_lines.append(f"Google text model hint: {google_text_model_hint}")
|
| 299 |
debug_lines.append(f"Seed enabled: {use_seed}, seed: {seed if use_seed else 'None'}")
|
|
|
|
| 301 |
seed_val: Optional[int] = seed if use_seed else None
|
| 302 |
|
| 303 |
try:
|
| 304 |
+
# TEXT / INFOGRAPHIC
|
| 305 |
if task_type in ["Text", "Infographic Spec"]:
|
| 306 |
if provider == "OpenAI":
|
| 307 |
if not openai_key.strip():
|
|
|
|
| 325 |
if provider == "OpenAI":
|
| 326 |
if not openai_key.strip():
|
| 327 |
return "Missing OpenAI API key.", [], "OpenAI key not provided."
|
| 328 |
+
|
| 329 |
+
# Default to GPT-Image-1; for Palantir preset, swap to DALL·E 3
|
|
|
|
| 330 |
image_model = "gpt-image-1"
|
|
|
|
| 331 |
if "Palantir" in preset:
|
| 332 |
image_model = "dall-e-3"
|
| 333 |
|
|
|
|
| 346 |
return "Missing Google API key.", [], "Google key not provided."
|
| 347 |
images = generate_image_google(
|
| 348 |
api_key=google_key.strip(),
|
| 349 |
+
google_image_model=google_image_model.strip() or "nano-banana-pro",
|
| 350 |
prompt=full_prompt,
|
| 351 |
n_images=n_images,
|
| 352 |
seed=seed_val,
|
|
|
|
| 354 |
|
| 355 |
if not text_output and task_type == "Image":
|
| 356 |
text_output = (
|
| 357 |
+
"Image(s) generated. Use Text / Infographic Spec mode to "
|
| 358 |
+
"generate captions, copy, or layout specs."
|
| 359 |
)
|
| 360 |
|
| 361 |
if not images and task_type == "Image":
|
|
|
|
| 364 |
return text_output, images, "\n".join(debug_lines)
|
| 365 |
|
| 366 |
except Exception as e:
|
| 367 |
+
debug_lines.append(f"Exception: {e}")
|
| 368 |
+
return f"Error: {e}", [], "\n".join(debug_lines)
|
| 369 |
|
| 370 |
|
| 371 |
# -----------------------
|
| 372 |
# UI
|
| 373 |
# -----------------------
|
| 374 |
|
| 375 |
+
with gr.Blocks() as demo: # <- no theme arg
|
| 376 |
gr.Markdown(
|
| 377 |
"""
|
| 378 |
# 🧬 ZEN Omni Studio — Text • Images • Infographics
|
| 379 |
|
| 380 |
+
Multi-provider creator for the ZEN ecosystem:
|
| 381 |
|
| 382 |
+
- 🔑 Bring your own OpenAI + Google (Gemini / Nano-Banana / Nano-Banana-Pro) keys
|
| 383 |
+
- 🎨 Generate **images** with presets + fine-grained controls
|
| 384 |
+
- 🧠 Generate **text** and **infographic specs** for ZEN dashboards, posters, and more
|
| 385 |
"""
|
| 386 |
)
|
| 387 |
|
| 388 |
with gr.Row():
|
| 389 |
with gr.Column():
|
| 390 |
+
gr.Markdown("### 🔐 API Keys (local to this session)")
|
| 391 |
+
|
| 392 |
openai_key = gr.Textbox(
|
| 393 |
label="OPENAI_API_KEY",
|
| 394 |
type="password",
|
|
|
|
| 412 |
label="Primary Provider",
|
| 413 |
)
|
| 414 |
|
|
|
|
| 415 |
base_prompt = gr.Textbox(
|
| 416 |
label="Main Prompt",
|
| 417 |
lines=5,
|
| 418 |
+
placeholder="Describe the ZEN image, text, or infographic you want.",
|
| 419 |
)
|
| 420 |
negative_prompt = gr.Textbox(
|
| 421 |
label="Negative Prompt (optional)",
|
| 422 |
lines=2,
|
| 423 |
+
placeholder="Things to avoid: low-res, clutter, warped text, etc.",
|
| 424 |
)
|
| 425 |
|
| 426 |
with gr.Row():
|
|
|
|
| 449 |
label="Style Accent",
|
| 450 |
)
|
| 451 |
|
| 452 |
+
gr.Markdown("### 🎛 OpenAI Image Controls")
|
|
|
|
| 453 |
with gr.Row():
|
| 454 |
size = gr.Dropdown(
|
| 455 |
[
|
|
|
|
| 488 |
|
| 489 |
gr.Markdown("### 🧪 Google Image / Text Model Hints")
|
| 490 |
google_image_model = gr.Textbox(
|
| 491 |
+
label="Google Image Model (default: nano-banana-pro)",
|
| 492 |
value="nano-banana-pro",
|
| 493 |
+
placeholder="e.g. nano-banana-pro or your exact model id",
|
| 494 |
)
|
| 495 |
google_text_model_hint = gr.Textbox(
|
| 496 |
+
label="Google Text Model Hint",
|
| 497 |
value="gemini-1.5-pro",
|
| 498 |
+
placeholder="Used internally as default text model.",
|
| 499 |
)
|
| 500 |
|
| 501 |
generate_btn = gr.Button("🚀 Generate", variant="primary")
|
|
|
|
| 506 |
|
| 507 |
gr.Markdown("### 🖼 Image Output")
|
| 508 |
image_gallery = gr.Gallery(
|
|
|
|
| 509 |
show_label=False,
|
| 510 |
columns=2,
|
| 511 |
height=500,
|
| 512 |
)
|
| 513 |
|
| 514 |
+
gr.Markdown("### 🧾 Debug / Logs")
|
| 515 |
debug_output = gr.Textbox(
|
| 516 |
label="Debug Info",
|
| 517 |
lines=10,
|
| 518 |
)
|
| 519 |
|
|
|
|
| 520 |
generate_btn.click(
|
| 521 |
fn=run_generation,
|
| 522 |
inputs=[
|