Update app.py
Browse files
app.py
CHANGED
|
@@ -8,9 +8,9 @@ import matplotlib.pyplot as plt
|
|
| 8 |
from matplotlib.figure import Figure
|
| 9 |
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
#
|
| 13 |
-
#
|
| 14 |
|
| 15 |
def call_chat_completion(
|
| 16 |
api_key: str,
|
|
@@ -18,14 +18,14 @@ def call_chat_completion(
|
|
| 18 |
model: str,
|
| 19 |
system_prompt: str,
|
| 20 |
user_prompt: str,
|
| 21 |
-
max_completion_tokens: int =
|
| 22 |
) -> str:
|
| 23 |
"""
|
| 24 |
-
OpenAI-compatible
|
| 25 |
|
| 26 |
-
- Uses `max_completion_tokens` (
|
| 27 |
-
- Falls back to `max_tokens`
|
| 28 |
-
- No temperature
|
| 29 |
"""
|
| 30 |
if not api_key:
|
| 31 |
raise ValueError("API key is required.")
|
|
@@ -40,8 +40,7 @@ def call_chat_completion(
|
|
| 40 |
"Content-Type": "application/json",
|
| 41 |
}
|
| 42 |
|
| 43 |
-
|
| 44 |
-
new_payload = {
|
| 45 |
"model": model,
|
| 46 |
"messages": [
|
| 47 |
{"role": "system", "content": system_prompt},
|
|
@@ -50,19 +49,13 @@ def call_chat_completion(
|
|
| 50 |
"max_completion_tokens": max_completion_tokens,
|
| 51 |
}
|
| 52 |
|
| 53 |
-
resp = requests.post(url, headers=headers, json=
|
| 54 |
|
| 55 |
-
#
|
| 56 |
if resp.status_code == 400 and "max_completion_tokens" in resp.text:
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
{"role": "system", "content": system_prompt},
|
| 61 |
-
{"role": "user", "content": user_prompt},
|
| 62 |
-
],
|
| 63 |
-
"max_tokens": max_completion_tokens,
|
| 64 |
-
}
|
| 65 |
-
resp = requests.post(url, headers=headers, json=legacy_payload, timeout=60)
|
| 66 |
|
| 67 |
if resp.status_code != 200:
|
| 68 |
raise RuntimeError(
|
|
@@ -73,19 +66,15 @@ def call_chat_completion(
|
|
| 73 |
try:
|
| 74 |
return data["choices"][0]["message"]["content"]
|
| 75 |
except Exception as e:
|
| 76 |
-
raise RuntimeError(f"Unexpected LLM response format: {e}\n\n{data}")
|
| 77 |
|
| 78 |
|
| 79 |
-
#
|
| 80 |
-
#
|
| 81 |
-
#
|
| 82 |
|
| 83 |
SOP_SYSTEM_PROMPT = """
|
| 84 |
-
You are an expert
|
| 85 |
-
|
| 86 |
-
You generate clear, professional, implementation-ready Standard Operating Procedures (SOPs).
|
| 87 |
-
|
| 88 |
-
You MUST respond strictly as JSON using this schema:
|
| 89 |
|
| 90 |
{
|
| 91 |
"title": "string",
|
|
@@ -118,8 +107,9 @@ You MUST respond strictly as JSON using this schema:
|
|
| 118 |
"last_updated": "string"
|
| 119 |
}
|
| 120 |
}
|
| 121 |
-
"""
|
| 122 |
|
|
|
|
|
|
|
| 123 |
|
| 124 |
def build_user_prompt(
|
| 125 |
sop_title: str,
|
|
@@ -129,43 +119,42 @@ def build_user_prompt(
|
|
| 129 |
detail_level: str,
|
| 130 |
) -> str:
|
| 131 |
return f"""
|
| 132 |
-
|
| 133 |
Context: {description or "N/A"}
|
| 134 |
Industry: {industry or "General"}
|
| 135 |
Tone: {tone or "Professional"}
|
| 136 |
Detail Level: {detail_level or "Standard"}
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
"""
|
| 140 |
|
| 141 |
|
| 142 |
def parse_sop_json(raw_text: str) -> Dict[str, Any]:
|
| 143 |
-
"""
|
| 144 |
txt = raw_text.strip()
|
| 145 |
|
| 146 |
-
# Strip markdown fences if present
|
| 147 |
if txt.startswith("```"):
|
| 148 |
parts = txt.split("```")
|
| 149 |
-
|
|
|
|
| 150 |
|
| 151 |
-
# Extract JSON between first '{' and last '}'
|
| 152 |
first = txt.find("{")
|
| 153 |
last = txt.rfind("}")
|
| 154 |
-
if first
|
| 155 |
-
|
|
|
|
| 156 |
|
| 157 |
return json.loads(txt)
|
| 158 |
|
| 159 |
|
| 160 |
def sop_to_markdown(sop: Dict[str, Any]) -> str:
|
| 161 |
-
"""
|
| 162 |
|
| 163 |
-
def bullet(items
|
| 164 |
if not items:
|
| 165 |
-
return "_None
|
| 166 |
return "\n".join(f"- {i}" for i in items)
|
| 167 |
|
| 168 |
-
md
|
| 169 |
|
| 170 |
md.append(f"# {sop.get('title', 'Standard Operating Procedure')}\n")
|
| 171 |
|
|
@@ -179,10 +168,9 @@ def sop_to_markdown(sop: Dict[str, Any]) -> str:
|
|
| 179 |
md.append(bullet(sop.get("definitions", [])))
|
| 180 |
|
| 181 |
md.append("\n## 4. Roles & Responsibilities")
|
| 182 |
-
for
|
| 183 |
-
|
| 184 |
-
md.append(
|
| 185 |
-
md.append(bullet(r.get("responsibilities", [])))
|
| 186 |
|
| 187 |
md.append("\n## 5. Prerequisites")
|
| 188 |
md.append(bullet(sop.get("prerequisites", [])))
|
|
@@ -200,10 +188,10 @@ def sop_to_markdown(sop: Dict[str, Any]) -> str:
|
|
| 200 |
md.append("\n## 7. Escalation")
|
| 201 |
md.append(bullet(sop.get("escalation", [])))
|
| 202 |
|
| 203 |
-
md.append("\n## 8. Metrics
|
| 204 |
md.append(bullet(sop.get("metrics", [])))
|
| 205 |
|
| 206 |
-
md.append("\n## 9. Risks
|
| 207 |
md.append(bullet(sop.get("risks", [])))
|
| 208 |
|
| 209 |
v = sop.get("versioning", {})
|
|
@@ -215,182 +203,166 @@ def sop_to_markdown(sop: Dict[str, Any]) -> str:
|
|
| 215 |
return "\n\n".join(md)
|
| 216 |
|
| 217 |
|
| 218 |
-
#
|
| 219 |
-
#
|
| 220 |
-
#
|
| 221 |
|
| 222 |
def create_sop_steps_figure(sop: Dict[str, Any]) -> Figure:
|
| 223 |
"""
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
-
|
| 228 |
-
- Number block on the left
|
| 229 |
-
- Wrapped description text
|
| 230 |
"""
|
| 231 |
|
| 232 |
steps = sop.get("steps", [])
|
| 233 |
-
|
| 234 |
-
# Empty state
|
| 235 |
if not steps:
|
| 236 |
fig, ax = plt.subplots(figsize=(7, 2))
|
| 237 |
-
ax.text(
|
| 238 |
-
0.5,
|
| 239 |
-
0.5,
|
| 240 |
-
"No steps available to visualize.",
|
| 241 |
-
ha="center",
|
| 242 |
-
va="center",
|
| 243 |
-
fontsize=12,
|
| 244 |
-
)
|
| 245 |
ax.axis("off")
|
| 246 |
fig.tight_layout()
|
| 247 |
return fig
|
| 248 |
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
ax.set_xlim(0, 1)
|
| 257 |
-
ax.set_ylim(0,
|
| 258 |
|
| 259 |
-
|
| 260 |
-
card_bottom_margin = 0.25
|
| 261 |
-
card_height = 1 - (card_top_margin + card_bottom_margin)
|
| 262 |
|
| 263 |
-
for
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
row_bottom = row_top - card_height
|
| 267 |
-
center_y = (row_top + row_bottom) / 2
|
| 268 |
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
desc = step.get("description", "")
|
| 273 |
-
|
| 274 |
-
# Wrap description into multiple lines
|
| 275 |
-
desc_wrapped = textwrap.fill(desc, width=80)
|
| 276 |
-
|
| 277 |
-
# Card rectangle (full width)
|
| 278 |
-
card_x0 = 0.03
|
| 279 |
-
card_x1 = 0.97
|
| 280 |
-
card_width = card_x1 - card_x0
|
| 281 |
|
|
|
|
| 282 |
ax.add_patch(
|
| 283 |
plt.Rectangle(
|
| 284 |
-
(
|
| 285 |
-
|
| 286 |
-
|
| 287 |
fill=False,
|
| 288 |
-
linewidth=1.
|
| 289 |
)
|
| 290 |
)
|
| 291 |
|
| 292 |
-
# Number block
|
| 293 |
-
|
| 294 |
-
num_block_x0 = card_x0
|
| 295 |
-
num_block_y0 = row_bottom
|
| 296 |
-
num_block_height = card_height
|
| 297 |
-
|
| 298 |
ax.add_patch(
|
| 299 |
plt.Rectangle(
|
| 300 |
-
(
|
| 301 |
-
|
| 302 |
-
|
| 303 |
fill=False,
|
| 304 |
-
linewidth=1.
|
| 305 |
)
|
| 306 |
)
|
| 307 |
|
|
|
|
| 308 |
ax.text(
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
str(step_number),
|
| 312 |
ha="center",
|
| 313 |
va="center",
|
| 314 |
-
fontsize=
|
| 315 |
fontweight="bold",
|
| 316 |
)
|
| 317 |
|
| 318 |
-
# Text
|
| 319 |
-
|
| 320 |
|
| 321 |
# Title
|
| 322 |
ax.text(
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
title,
|
| 326 |
ha="left",
|
| 327 |
va="top",
|
| 328 |
fontsize=12,
|
| 329 |
fontweight="bold",
|
| 330 |
)
|
| 331 |
|
| 332 |
-
# Owner
|
|
|
|
| 333 |
if owner:
|
|
|
|
| 334 |
ax.text(
|
| 335 |
-
|
| 336 |
-
|
| 337 |
f"Owner: {owner}",
|
| 338 |
ha="left",
|
| 339 |
va="top",
|
| 340 |
fontsize=10,
|
| 341 |
style="italic",
|
| 342 |
)
|
| 343 |
-
desc_y = row_top - 0.48
|
| 344 |
else:
|
| 345 |
-
|
| 346 |
|
| 347 |
# Description (wrapped)
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
|
| 357 |
ax.axis("off")
|
| 358 |
fig.tight_layout()
|
| 359 |
return fig
|
| 360 |
|
| 361 |
|
| 362 |
-
#
|
| 363 |
-
#
|
| 364 |
-
#
|
| 365 |
|
| 366 |
SAMPLE_SOPS: Dict[str, Dict[str, str]] = {
|
| 367 |
-
"Volunteer Onboarding
|
| 368 |
-
"title": "Volunteer Onboarding
|
| 369 |
-
"description":
|
| 370 |
-
"Create a clear SOP for onboarding new volunteers at a youth-serving "
|
| 371 |
-
"nonprofit. Include background checks, orientation, training, and site placement."
|
| 372 |
-
),
|
| 373 |
"industry": "Nonprofit / Youth Development",
|
| 374 |
},
|
| 375 |
"Remote Employee Onboarding": {
|
| 376 |
"title": "Remote Employee Onboarding",
|
| 377 |
-
"description":
|
| 378 |
-
|
| 379 |
-
"covering IT setup, HR paperwork, culture onboarding, and 30-60-90 day milestones."
|
| 380 |
-
),
|
| 381 |
-
"industry": "General / HR",
|
| 382 |
},
|
| 383 |
-
"IT Outage
|
| 384 |
"title": "IT Outage Incident Response",
|
| 385 |
-
"description":
|
| 386 |
-
"Create an SOP for responding to major IT outages affecting multiple sites, "
|
| 387 |
-
"including triage, communication, escalation, and post-mortem."
|
| 388 |
-
),
|
| 389 |
"industry": "IT / Operations",
|
| 390 |
},
|
| 391 |
}
|
| 392 |
|
| 393 |
-
|
| 394 |
def load_sample(sample_name: str) -> Tuple[str, str, str]:
|
| 395 |
if not sample_name or sample_name not in SAMPLE_SOPS:
|
| 396 |
return "", "", "General"
|
|
@@ -398,33 +370,32 @@ def load_sample(sample_name: str) -> Tuple[str, str, str]:
|
|
| 398 |
return s["title"], s["description"], s["industry"]
|
| 399 |
|
| 400 |
|
| 401 |
-
#
|
| 402 |
-
#
|
| 403 |
-
#
|
| 404 |
|
| 405 |
def generate_sop_ui(
|
| 406 |
api_key_state: str,
|
| 407 |
api_key_input: str,
|
| 408 |
base_url: str,
|
| 409 |
-
|
| 410 |
sop_title: str,
|
| 411 |
description: str,
|
| 412 |
industry: str,
|
| 413 |
tone: str,
|
| 414 |
detail_level: str,
|
| 415 |
) -> Tuple[str, str, Figure, str]:
|
| 416 |
-
|
| 417 |
api_key = api_key_input or api_key_state
|
| 418 |
if not api_key:
|
| 419 |
return (
|
| 420 |
-
"⚠️ Please enter
|
| 421 |
"",
|
| 422 |
create_sop_steps_figure({"steps": []}),
|
| 423 |
api_key_state,
|
| 424 |
)
|
| 425 |
|
| 426 |
-
|
| 427 |
-
model = "gpt-4.1-mini"
|
| 428 |
|
| 429 |
user_prompt = build_user_prompt(sop_title, description, industry, tone, detail_level)
|
| 430 |
|
|
@@ -435,7 +406,7 @@ def generate_sop_ui(
|
|
| 435 |
model=model,
|
| 436 |
system_prompt=SOP_SYSTEM_PROMPT,
|
| 437 |
user_prompt=user_prompt,
|
| 438 |
-
max_completion_tokens=
|
| 439 |
)
|
| 440 |
|
| 441 |
sop = parse_sop_json(raw)
|
|
@@ -443,8 +414,7 @@ def generate_sop_ui(
|
|
| 443 |
fig = create_sop_steps_figure(sop)
|
| 444 |
json_out = json.dumps(sop, indent=2, ensure_ascii=False)
|
| 445 |
|
| 446 |
-
#
|
| 447 |
-
return md, json_out, fig, api_key
|
| 448 |
|
| 449 |
except Exception as e:
|
| 450 |
return (
|
|
@@ -455,65 +425,65 @@ def generate_sop_ui(
|
|
| 455 |
)
|
| 456 |
|
| 457 |
|
| 458 |
-
#
|
| 459 |
-
#
|
| 460 |
-
#
|
| 461 |
|
| 462 |
with gr.Blocks(title="ZEN Simple SOP Builder") as demo:
|
| 463 |
gr.Markdown(
|
| 464 |
"""
|
| 465 |
# 🧭 ZEN Simple SOP Builder
|
| 466 |
|
| 467 |
-
Generate clean, professional Standard Operating Procedures (SOPs) from a short description
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
1. Configure your API settings
|
| 471 |
-
2. Describe the process you want to document
|
| 472 |
-
3. Generate a full SOP + visual flow of the steps
|
| 473 |
|
| 474 |
-
|
| 475 |
"""
|
| 476 |
)
|
| 477 |
|
| 478 |
api_key_state = gr.State("")
|
| 479 |
|
| 480 |
with gr.Row():
|
|
|
|
| 481 |
with gr.Column(scale=1):
|
| 482 |
gr.Markdown("### Step 1 — API & Model Settings")
|
| 483 |
|
| 484 |
api_key_input = gr.Textbox(
|
| 485 |
label="LLM API Key",
|
| 486 |
-
placeholder="Enter your
|
| 487 |
type="password",
|
| 488 |
)
|
| 489 |
|
| 490 |
base_url = gr.Textbox(
|
| 491 |
label="Base URL",
|
| 492 |
value="https://api.openai.com",
|
| 493 |
-
placeholder="e.g. https://api.openai.com or
|
| 494 |
)
|
| 495 |
|
| 496 |
model_name = gr.Textbox(
|
| 497 |
label="Model Name",
|
| 498 |
-
value="gpt-4.1
|
| 499 |
-
placeholder="e.g. gpt-4.1, gpt-4o,
|
| 500 |
)
|
| 501 |
|
| 502 |
-
gr.Markdown("###
|
|
|
|
| 503 |
sample_dropdown = gr.Dropdown(
|
| 504 |
-
label="Sample
|
| 505 |
choices=list(SAMPLE_SOPS.keys()),
|
| 506 |
value=None,
|
| 507 |
-
info="Optional: load a
|
| 508 |
)
|
|
|
|
| 509 |
load_button = gr.Button("Load Sample into Form")
|
| 510 |
|
|
|
|
| 511 |
with gr.Column(scale=2):
|
| 512 |
-
gr.Markdown("### Step
|
| 513 |
|
| 514 |
sop_title = gr.Textbox(
|
| 515 |
label="SOP Title",
|
| 516 |
-
placeholder="e.g. Volunteer Onboarding Workflow
|
| 517 |
)
|
| 518 |
|
| 519 |
description = gr.Textbox(
|
|
@@ -542,13 +512,13 @@ Perfect for mid-career professionals who need clarity, structure, and ownership
|
|
| 542 |
|
| 543 |
generate_button = gr.Button("🚀 Generate SOP", variant="primary")
|
| 544 |
|
| 545 |
-
gr.Markdown("### Step
|
| 546 |
|
| 547 |
with gr.Row():
|
| 548 |
with gr.Column(scale=3):
|
| 549 |
sop_output = gr.Markdown(
|
| 550 |
-
label="
|
| 551 |
-
value="Your SOP will appear here.",
|
| 552 |
)
|
| 553 |
with gr.Column(scale=2):
|
| 554 |
sop_json_output = gr.Code(
|
|
@@ -556,10 +526,10 @@ Perfect for mid-career professionals who need clarity, structure, and ownership
|
|
| 556 |
language="json",
|
| 557 |
)
|
| 558 |
|
| 559 |
-
gr.Markdown("### Visual
|
| 560 |
sop_figure = gr.Plot(label="SOP Steps Diagram")
|
| 561 |
|
| 562 |
-
# Wire up
|
| 563 |
load_button.click(
|
| 564 |
fn=load_sample,
|
| 565 |
inputs=[sample_dropdown],
|
|
|
|
| 8 |
from matplotlib.figure import Figure
|
| 9 |
|
| 10 |
|
| 11 |
+
# ============================================================
|
| 12 |
+
# LLM CALLER (GPT-4.1 BY DEFAULT)
|
| 13 |
+
# ============================================================
|
| 14 |
|
| 15 |
def call_chat_completion(
|
| 16 |
api_key: str,
|
|
|
|
| 18 |
model: str,
|
| 19 |
system_prompt: str,
|
| 20 |
user_prompt: str,
|
| 21 |
+
max_completion_tokens: int = 2000,
|
| 22 |
) -> str:
|
| 23 |
"""
|
| 24 |
+
OpenAI-compatible chat completion call.
|
| 25 |
|
| 26 |
+
- Uses new-style `max_completion_tokens` (for GPT-4.1, GPT-4o, etc.)
|
| 27 |
+
- Falls back to `max_tokens` if the provider doesn't support it.
|
| 28 |
+
- No temperature / top_p to avoid incompatibility with some models.
|
| 29 |
"""
|
| 30 |
if not api_key:
|
| 31 |
raise ValueError("API key is required.")
|
|
|
|
| 40 |
"Content-Type": "application/json",
|
| 41 |
}
|
| 42 |
|
| 43 |
+
payload = {
|
|
|
|
| 44 |
"model": model,
|
| 45 |
"messages": [
|
| 46 |
{"role": "system", "content": system_prompt},
|
|
|
|
| 49 |
"max_completion_tokens": max_completion_tokens,
|
| 50 |
}
|
| 51 |
|
| 52 |
+
resp = requests.post(url, headers=headers, json=payload, timeout=60)
|
| 53 |
|
| 54 |
+
# Fallback for providers still expecting `max_tokens`
|
| 55 |
if resp.status_code == 400 and "max_completion_tokens" in resp.text:
|
| 56 |
+
payload.pop("max_completion_tokens", None)
|
| 57 |
+
payload["max_tokens"] = max_completion_tokens
|
| 58 |
+
resp = requests.post(url, headers=headers, json=payload, timeout=60)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
if resp.status_code != 200:
|
| 61 |
raise RuntimeError(
|
|
|
|
| 66 |
try:
|
| 67 |
return data["choices"][0]["message"]["content"]
|
| 68 |
except Exception as e:
|
| 69 |
+
raise RuntimeError(f"Unexpected LLM response format: {e}\n\n{json.dumps(data, indent=2)}") from e
|
| 70 |
|
| 71 |
|
| 72 |
+
# ============================================================
|
| 73 |
+
# SOP PROMPT + PARSING
|
| 74 |
+
# ============================================================
|
| 75 |
|
| 76 |
SOP_SYSTEM_PROMPT = """
|
| 77 |
+
You are an expert process engineer. Produce SOPs strictly as JSON with this schema:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
{
|
| 80 |
"title": "string",
|
|
|
|
| 107 |
"last_updated": "string"
|
| 108 |
}
|
| 109 |
}
|
|
|
|
| 110 |
|
| 111 |
+
Return ONLY JSON. No explanation or commentary.
|
| 112 |
+
"""
|
| 113 |
|
| 114 |
def build_user_prompt(
|
| 115 |
sop_title: str,
|
|
|
|
| 119 |
detail_level: str,
|
| 120 |
) -> str:
|
| 121 |
return f"""
|
| 122 |
+
SOP Title: {sop_title or "Untitled SOP"}
|
| 123 |
Context: {description or "N/A"}
|
| 124 |
Industry: {industry or "General"}
|
| 125 |
Tone: {tone or "Professional"}
|
| 126 |
Detail Level: {detail_level or "Standard"}
|
| 127 |
+
Audience: mid-career professionals who need clarity and accountability.
|
| 128 |
+
""".strip()
|
|
|
|
| 129 |
|
| 130 |
|
| 131 |
def parse_sop_json(raw_text: str) -> Dict[str, Any]:
|
| 132 |
+
"""Extract JSON from LLM output, stripping code fences if present."""
|
| 133 |
txt = raw_text.strip()
|
| 134 |
|
|
|
|
| 135 |
if txt.startswith("```"):
|
| 136 |
parts = txt.split("```")
|
| 137 |
+
# choose the first part that looks like JSON
|
| 138 |
+
txt = next((p for p in parts if "{" in p and "}" in p), parts[-1])
|
| 139 |
|
|
|
|
| 140 |
first = txt.find("{")
|
| 141 |
last = txt.rfind("}")
|
| 142 |
+
if first == -1 or last == -1:
|
| 143 |
+
raise ValueError("No JSON object detected in model output.")
|
| 144 |
+
txt = txt[first:last + 1]
|
| 145 |
|
| 146 |
return json.loads(txt)
|
| 147 |
|
| 148 |
|
| 149 |
def sop_to_markdown(sop: Dict[str, Any]) -> str:
|
| 150 |
+
"""Render SOP JSON → readable Markdown document."""
|
| 151 |
|
| 152 |
+
def bullet(items):
|
| 153 |
if not items:
|
| 154 |
+
return "_None provided._"
|
| 155 |
return "\n".join(f"- {i}" for i in items)
|
| 156 |
|
| 157 |
+
md = []
|
| 158 |
|
| 159 |
md.append(f"# {sop.get('title', 'Standard Operating Procedure')}\n")
|
| 160 |
|
|
|
|
| 168 |
md.append(bullet(sop.get("definitions", [])))
|
| 169 |
|
| 170 |
md.append("\n## 4. Roles & Responsibilities")
|
| 171 |
+
for role in sop.get("roles", []):
|
| 172 |
+
md.append(f"### {role.get('name', 'Role')}")
|
| 173 |
+
md.append(bullet(role.get("responsibilities", [])))
|
|
|
|
| 174 |
|
| 175 |
md.append("\n## 5. Prerequisites")
|
| 176 |
md.append(bullet(sop.get("prerequisites", [])))
|
|
|
|
| 188 |
md.append("\n## 7. Escalation")
|
| 189 |
md.append(bullet(sop.get("escalation", [])))
|
| 190 |
|
| 191 |
+
md.append("\n## 8. Metrics")
|
| 192 |
md.append(bullet(sop.get("metrics", [])))
|
| 193 |
|
| 194 |
+
md.append("\n## 9. Risks")
|
| 195 |
md.append(bullet(sop.get("risks", [])))
|
| 196 |
|
| 197 |
v = sop.get("versioning", {})
|
|
|
|
| 203 |
return "\n\n".join(md)
|
| 204 |
|
| 205 |
|
| 206 |
+
# ============================================================
|
| 207 |
+
# IMPROVED DIAGRAM — AUTO-SIZED CARDS, NO OVERFLOW
|
| 208 |
+
# ============================================================
|
| 209 |
|
| 210 |
def create_sop_steps_figure(sop: Dict[str, Any]) -> Figure:
|
| 211 |
"""
|
| 212 |
+
Draw each step as a stacked card with:
|
| 213 |
+
- dynamic height based on description length
|
| 214 |
+
- number block on the left
|
| 215 |
+
- title + owner + wrapped description inside card
|
|
|
|
|
|
|
| 216 |
"""
|
| 217 |
|
| 218 |
steps = sop.get("steps", [])
|
|
|
|
|
|
|
| 219 |
if not steps:
|
| 220 |
fig, ax = plt.subplots(figsize=(7, 2))
|
| 221 |
+
ax.text(0.5, 0.5, "No steps available to visualize.", ha="center", va="center")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
ax.axis("off")
|
| 223 |
fig.tight_layout()
|
| 224 |
return fig
|
| 225 |
|
| 226 |
+
# First pass: determine required height for each card
|
| 227 |
+
card_heights = []
|
| 228 |
+
total_height = 0.0
|
| 229 |
+
|
| 230 |
+
for step in steps:
|
| 231 |
+
desc_lines = textwrap.wrap(step.get("description", ""), width=70)
|
| 232 |
+
# base height (title + owner) + 0.3 per line of description
|
| 233 |
+
base = 1.0 # title + owner + padding
|
| 234 |
+
per_line = 0.32
|
| 235 |
+
h = base + per_line * max(len(desc_lines), 1)
|
| 236 |
+
h += 0.3 # bottom padding
|
| 237 |
+
card_heights.append(h)
|
| 238 |
+
total_height += h
|
| 239 |
+
|
| 240 |
+
# Add spacing between cards
|
| 241 |
+
spacing = 0.4
|
| 242 |
+
total_height += spacing * (len(steps) + 1)
|
| 243 |
+
|
| 244 |
+
fig_height = min(20, max(5, total_height))
|
| 245 |
+
fig, ax = plt.subplots(figsize=(10, fig_height))
|
| 246 |
ax.set_xlim(0, 1)
|
| 247 |
+
ax.set_ylim(0, total_height)
|
| 248 |
|
| 249 |
+
y = total_height - spacing # start from top
|
|
|
|
|
|
|
| 250 |
|
| 251 |
+
for step, h in zip(steps, card_heights):
|
| 252 |
+
y_bottom = y - h
|
| 253 |
+
y_top = y
|
|
|
|
|
|
|
| 254 |
|
| 255 |
+
# Card boundaries
|
| 256 |
+
x0 = 0.05
|
| 257 |
+
x1 = 0.95
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
+
# Draw outer card
|
| 260 |
ax.add_patch(
|
| 261 |
plt.Rectangle(
|
| 262 |
+
(x0, y_bottom),
|
| 263 |
+
x1 - x0,
|
| 264 |
+
h,
|
| 265 |
fill=False,
|
| 266 |
+
linewidth=1.8,
|
| 267 |
)
|
| 268 |
)
|
| 269 |
|
| 270 |
+
# Number block
|
| 271 |
+
num_block_w = 0.08
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
ax.add_patch(
|
| 273 |
plt.Rectangle(
|
| 274 |
+
(x0, y_bottom),
|
| 275 |
+
num_block_w,
|
| 276 |
+
h,
|
| 277 |
fill=False,
|
| 278 |
+
linewidth=1.6,
|
| 279 |
)
|
| 280 |
)
|
| 281 |
|
| 282 |
+
# Step number text in the center of the number block
|
| 283 |
ax.text(
|
| 284 |
+
x0 + num_block_w / 2,
|
| 285 |
+
y_bottom + h / 2,
|
| 286 |
+
str(step.get("step_number", "?")),
|
| 287 |
ha="center",
|
| 288 |
va="center",
|
| 289 |
+
fontsize=13,
|
| 290 |
fontweight="bold",
|
| 291 |
)
|
| 292 |
|
| 293 |
+
# Text area start
|
| 294 |
+
text_x = x0 + num_block_w + 0.02
|
| 295 |
|
| 296 |
# Title
|
| 297 |
ax.text(
|
| 298 |
+
text_x,
|
| 299 |
+
y_top - 0.25,
|
| 300 |
+
step.get("title", ""),
|
| 301 |
ha="left",
|
| 302 |
va="top",
|
| 303 |
fontsize=12,
|
| 304 |
fontweight="bold",
|
| 305 |
)
|
| 306 |
|
| 307 |
+
# Owner
|
| 308 |
+
owner = step.get("owner_role", "")
|
| 309 |
if owner:
|
| 310 |
+
owner_y = y_top - 0.55
|
| 311 |
ax.text(
|
| 312 |
+
text_x,
|
| 313 |
+
owner_y,
|
| 314 |
f"Owner: {owner}",
|
| 315 |
ha="left",
|
| 316 |
va="top",
|
| 317 |
fontsize=10,
|
| 318 |
style="italic",
|
| 319 |
)
|
|
|
|
| 320 |
else:
|
| 321 |
+
owner_y = y_top - 0.5
|
| 322 |
|
| 323 |
# Description (wrapped)
|
| 324 |
+
desc_lines = textwrap.wrap(step.get("description", ""), width=70)
|
| 325 |
+
desc_y = owner_y - 0.4
|
| 326 |
+
for line in desc_lines:
|
| 327 |
+
ax.text(
|
| 328 |
+
text_x,
|
| 329 |
+
desc_y,
|
| 330 |
+
line,
|
| 331 |
+
ha="left",
|
| 332 |
+
va="top",
|
| 333 |
+
fontsize=9,
|
| 334 |
+
)
|
| 335 |
+
desc_y -= 0.3 # vertical spacing per line
|
| 336 |
+
|
| 337 |
+
y = y_bottom - spacing # move down for next card
|
| 338 |
|
| 339 |
ax.axis("off")
|
| 340 |
fig.tight_layout()
|
| 341 |
return fig
|
| 342 |
|
| 343 |
|
| 344 |
+
# ============================================================
|
| 345 |
+
# SAMPLE SCENARIOS
|
| 346 |
+
# ============================================================
|
| 347 |
|
| 348 |
SAMPLE_SOPS: Dict[str, Dict[str, str]] = {
|
| 349 |
+
"Volunteer Onboarding": {
|
| 350 |
+
"title": "Volunteer Onboarding",
|
| 351 |
+
"description": "Onboard new volunteers including application review, background checks, orientation, training, and site placement.",
|
|
|
|
|
|
|
|
|
|
| 352 |
"industry": "Nonprofit / Youth Development",
|
| 353 |
},
|
| 354 |
"Remote Employee Onboarding": {
|
| 355 |
"title": "Remote Employee Onboarding",
|
| 356 |
+
"description": "Design a remote onboarding SOP for hybrid employees including IT setup, HR paperwork, and culture onboarding.",
|
| 357 |
+
"industry": "HR / General",
|
|
|
|
|
|
|
|
|
|
| 358 |
},
|
| 359 |
+
"IT Outage Response": {
|
| 360 |
"title": "IT Outage Incident Response",
|
| 361 |
+
"description": "Major outage response SOP including detection, triage, escalation, communication, restoration, and post-mortem.",
|
|
|
|
|
|
|
|
|
|
| 362 |
"industry": "IT / Operations",
|
| 363 |
},
|
| 364 |
}
|
| 365 |
|
|
|
|
| 366 |
def load_sample(sample_name: str) -> Tuple[str, str, str]:
|
| 367 |
if not sample_name or sample_name not in SAMPLE_SOPS:
|
| 368 |
return "", "", "General"
|
|
|
|
| 370 |
return s["title"], s["description"], s["industry"]
|
| 371 |
|
| 372 |
|
| 373 |
+
# ============================================================
|
| 374 |
+
# MAIN HANDLER FOR GRADIO
|
| 375 |
+
# ============================================================
|
| 376 |
|
| 377 |
def generate_sop_ui(
|
| 378 |
api_key_state: str,
|
| 379 |
api_key_input: str,
|
| 380 |
base_url: str,
|
| 381 |
+
model_name: str,
|
| 382 |
sop_title: str,
|
| 383 |
description: str,
|
| 384 |
industry: str,
|
| 385 |
tone: str,
|
| 386 |
detail_level: str,
|
| 387 |
) -> Tuple[str, str, Figure, str]:
|
| 388 |
+
|
| 389 |
api_key = api_key_input or api_key_state
|
| 390 |
if not api_key:
|
| 391 |
return (
|
| 392 |
+
"⚠️ Please enter your API key in the left panel.",
|
| 393 |
"",
|
| 394 |
create_sop_steps_figure({"steps": []}),
|
| 395 |
api_key_state,
|
| 396 |
)
|
| 397 |
|
| 398 |
+
model = model_name or "gpt-4.1"
|
|
|
|
| 399 |
|
| 400 |
user_prompt = build_user_prompt(sop_title, description, industry, tone, detail_level)
|
| 401 |
|
|
|
|
| 406 |
model=model,
|
| 407 |
system_prompt=SOP_SYSTEM_PROMPT,
|
| 408 |
user_prompt=user_prompt,
|
| 409 |
+
max_completion_tokens=2000,
|
| 410 |
)
|
| 411 |
|
| 412 |
sop = parse_sop_json(raw)
|
|
|
|
| 414 |
fig = create_sop_steps_figure(sop)
|
| 415 |
json_out = json.dumps(sop, indent=2, ensure_ascii=False)
|
| 416 |
|
| 417 |
+
return md, json_out, fig, api_key # persist key in session state
|
|
|
|
| 418 |
|
| 419 |
except Exception as e:
|
| 420 |
return (
|
|
|
|
| 425 |
)
|
| 426 |
|
| 427 |
|
| 428 |
+
# ============================================================
|
| 429 |
+
# GRADIO UI
|
| 430 |
+
# ============================================================
|
| 431 |
|
| 432 |
with gr.Blocks(title="ZEN Simple SOP Builder") as demo:
|
| 433 |
gr.Markdown(
|
| 434 |
"""
|
| 435 |
# 🧭 ZEN Simple SOP Builder
|
| 436 |
|
| 437 |
+
Generate clean, professional Standard Operating Procedures (SOPs) from a short description,
|
| 438 |
+
plus an auto-generated visual diagram of the steps.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
|
| 440 |
+
Powered by your own API key (GPT-4.1 by default).
|
| 441 |
"""
|
| 442 |
)
|
| 443 |
|
| 444 |
api_key_state = gr.State("")
|
| 445 |
|
| 446 |
with gr.Row():
|
| 447 |
+
# LEFT COLUMN — API + Samples
|
| 448 |
with gr.Column(scale=1):
|
| 449 |
gr.Markdown("### Step 1 — API & Model Settings")
|
| 450 |
|
| 451 |
api_key_input = gr.Textbox(
|
| 452 |
label="LLM API Key",
|
| 453 |
+
placeholder="Enter your OpenAI (or compatible) API key",
|
| 454 |
type="password",
|
| 455 |
)
|
| 456 |
|
| 457 |
base_url = gr.Textbox(
|
| 458 |
label="Base URL",
|
| 459 |
value="https://api.openai.com",
|
| 460 |
+
placeholder="e.g. https://api.openai.com or custom OpenAI-compatible endpoint",
|
| 461 |
)
|
| 462 |
|
| 463 |
model_name = gr.Textbox(
|
| 464 |
label="Model Name",
|
| 465 |
+
value="gpt-4.1",
|
| 466 |
+
placeholder="e.g. gpt-4.1, gpt-4o, etc.",
|
| 467 |
)
|
| 468 |
|
| 469 |
+
gr.Markdown("### Load a Sample SOP")
|
| 470 |
+
|
| 471 |
sample_dropdown = gr.Dropdown(
|
| 472 |
+
label="Sample scenarios",
|
| 473 |
choices=list(SAMPLE_SOPS.keys()),
|
| 474 |
value=None,
|
| 475 |
+
info="Optional: load a ready-made example to test the tool.",
|
| 476 |
)
|
| 477 |
+
|
| 478 |
load_button = gr.Button("Load Sample into Form")
|
| 479 |
|
| 480 |
+
# RIGHT COLUMN — SOP Description
|
| 481 |
with gr.Column(scale=2):
|
| 482 |
+
gr.Markdown("### Step 2 — Describe the SOP")
|
| 483 |
|
| 484 |
sop_title = gr.Textbox(
|
| 485 |
label="SOP Title",
|
| 486 |
+
placeholder="e.g. Volunteer Onboarding Workflow",
|
| 487 |
)
|
| 488 |
|
| 489 |
description = gr.Textbox(
|
|
|
|
| 512 |
|
| 513 |
generate_button = gr.Button("🚀 Generate SOP", variant="primary")
|
| 514 |
|
| 515 |
+
gr.Markdown("### Step 3 — Generated SOP")
|
| 516 |
|
| 517 |
with gr.Row():
|
| 518 |
with gr.Column(scale=3):
|
| 519 |
sop_output = gr.Markdown(
|
| 520 |
+
label="SOP (Markdown)",
|
| 521 |
+
value="Your SOP will appear here after generation.",
|
| 522 |
)
|
| 523 |
with gr.Column(scale=2):
|
| 524 |
sop_json_output = gr.Code(
|
|
|
|
| 526 |
language="json",
|
| 527 |
)
|
| 528 |
|
| 529 |
+
gr.Markdown("### Step 4 — Visual Workflow Diagram")
|
| 530 |
sop_figure = gr.Plot(label="SOP Steps Diagram")
|
| 531 |
|
| 532 |
+
# Wire up actions
|
| 533 |
load_button.click(
|
| 534 |
fn=load_sample,
|
| 535 |
inputs=[sample_dropdown],
|