Spaces:
Sleeping
Sleeping
| import os | |
| import streamlit as st | |
| import cv2 | |
| import numpy as np | |
| from ultralytics import YOLO | |
| from PIL import Image | |
| import tempfile | |
| # Directly set the path for the model | |
| MODEL_PATH = 'best.pt' | |
| # Initialize YOLO model with custom trained weights | |
| model = YOLO(MODEL_PATH) | |
| def detect_rhino_image(image): | |
| image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
| results = model(image)[0] | |
| for box in results.boxes.data.tolist(): | |
| x1, y1, x2, y2, score, class_id = box | |
| if score > 0.5: | |
| cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 4) | |
| cv2.putText(image, results.names[int(class_id)].upper(), (int(x1), int(y1 - 10)), cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 255, 0), 3, cv2.LINE_AA) | |
| return image | |
| st.title('Rhinoceros Detection App') | |
| st.write("Upload an image for rhino detection.") | |
| file = st.file_uploader("Choose a file...", type=["jpg", "jpeg", "png"]) | |
| if file is not None: | |
| if file.type.split('/')[0] == 'image': | |
| image = Image.open(file) | |
| st.image(detect_rhino_image(image), caption='Processed Image', use_column_width=True) |