Update app.py
Browse files
app.py
CHANGED
|
@@ -3,19 +3,25 @@ import pandas as pd
|
|
| 3 |
import os
|
| 4 |
import faiss
|
| 5 |
import pickle
|
|
|
|
|
|
|
| 6 |
from sentence_transformers import SentenceTransformer
|
| 7 |
from groq import Groq
|
| 8 |
-
from
|
| 9 |
|
| 10 |
# Load environment variables
|
| 11 |
-
from dotenv import load_dotenv
|
| 12 |
load_dotenv()
|
| 13 |
|
| 14 |
# Setup Groq client
|
| 15 |
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
| 16 |
-
MODEL_NAME = "llama-3-70b-8192" #
|
| 17 |
|
| 18 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
@st.cache_data
|
| 20 |
def load_data():
|
| 21 |
dataset = load_dataset("llmware/rag_instruct_benchmark_tester", split="train")
|
|
@@ -34,16 +40,16 @@ def load_embeddings(df):
|
|
| 34 |
|
| 35 |
return index, embeddings, embed_model
|
| 36 |
|
| 37 |
-
# Retrieve top
|
| 38 |
def retrieve_context(query, embed_model, index, df, k=3):
|
| 39 |
query_embedding = embed_model.encode([query])
|
| 40 |
D, I = index.search(query_embedding, k)
|
| 41 |
context_passages = df.iloc[I[0]]['context'].tolist()
|
| 42 |
return context_passages
|
| 43 |
|
| 44 |
-
# Ask Groq LLM
|
| 45 |
def ask_groq(query, context):
|
| 46 |
-
prompt = f"""You are a helpful assistant. Use the
|
| 47 |
|
| 48 |
Context:
|
| 49 |
{context}
|
|
@@ -52,38 +58,43 @@ Question:
|
|
| 52 |
{query}
|
| 53 |
|
| 54 |
Answer:"""
|
|
|
|
| 55 |
response = client.chat.completions.create(
|
| 56 |
messages=[{"role": "user", "content": prompt}],
|
| 57 |
model=MODEL_NAME
|
| 58 |
)
|
| 59 |
return response.choices[0].message.content
|
| 60 |
|
| 61 |
-
#
|
| 62 |
-
st.title("π RAG App with Groq API")
|
| 63 |
-
st.markdown("Use this Retrieval-Augmented Generation app to ask enterprise, legal, and financial questions.")
|
| 64 |
-
|
| 65 |
df = load_data()
|
| 66 |
index, embeddings, embed_model = load_embeddings(df)
|
| 67 |
|
|
|
|
|
|
|
| 68 |
sample_queries = df['query'].dropna().unique().tolist()
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
| 77 |
if query:
|
| 78 |
st.markdown(f"**Your Query:** {query}")
|
| 79 |
-
|
|
|
|
| 80 |
contexts = retrieve_context(query, embed_model, index, df)
|
| 81 |
combined_context = "\n\n".join(contexts)
|
| 82 |
-
|
|
|
|
| 83 |
answer = ask_groq(query, combined_context)
|
|
|
|
| 84 |
st.markdown("### π‘ Answer")
|
| 85 |
st.write(answer)
|
|
|
|
| 86 |
st.markdown("### π Retrieved Context")
|
| 87 |
for i, ctx in enumerate(contexts, 1):
|
| 88 |
-
st.
|
| 89 |
-
|
|
|
|
| 3 |
import os
|
| 4 |
import faiss
|
| 5 |
import pickle
|
| 6 |
+
import random
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
from sentence_transformers import SentenceTransformer
|
| 9 |
from groq import Groq
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
|
| 12 |
# Load environment variables
|
|
|
|
| 13 |
load_dotenv()
|
| 14 |
|
| 15 |
# Setup Groq client
|
| 16 |
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
| 17 |
+
MODEL_NAME = "llama-3-70b-8192" # or try "llama-3-8b-8192" or "llama-3-3b-8192"
|
| 18 |
|
| 19 |
+
# Streamlit UI
|
| 20 |
+
st.set_page_config(page_title="RAG with Groq", layout="wide")
|
| 21 |
+
st.title("π RAG App using Groq API")
|
| 22 |
+
st.markdown("Ask enterprise, financial, and legal questions using Retrieval-Augmented Generation (RAG).")
|
| 23 |
+
|
| 24 |
+
# Load dataset from Hugging Face
|
| 25 |
@st.cache_data
|
| 26 |
def load_data():
|
| 27 |
dataset = load_dataset("llmware/rag_instruct_benchmark_tester", split="train")
|
|
|
|
| 40 |
|
| 41 |
return index, embeddings, embed_model
|
| 42 |
|
| 43 |
+
# Retrieve top-k relevant context
|
| 44 |
def retrieve_context(query, embed_model, index, df, k=3):
|
| 45 |
query_embedding = embed_model.encode([query])
|
| 46 |
D, I = index.search(query_embedding, k)
|
| 47 |
context_passages = df.iloc[I[0]]['context'].tolist()
|
| 48 |
return context_passages
|
| 49 |
|
| 50 |
+
# Ask the Groq LLM
|
| 51 |
def ask_groq(query, context):
|
| 52 |
+
prompt = f"""You are a helpful assistant. Use the context to answer the question.
|
| 53 |
|
| 54 |
Context:
|
| 55 |
{context}
|
|
|
|
| 58 |
{query}
|
| 59 |
|
| 60 |
Answer:"""
|
| 61 |
+
|
| 62 |
response = client.chat.completions.create(
|
| 63 |
messages=[{"role": "user", "content": prompt}],
|
| 64 |
model=MODEL_NAME
|
| 65 |
)
|
| 66 |
return response.choices[0].message.content
|
| 67 |
|
| 68 |
+
# Load everything
|
|
|
|
|
|
|
|
|
|
| 69 |
df = load_data()
|
| 70 |
index, embeddings, embed_model = load_embeddings(df)
|
| 71 |
|
| 72 |
+
# User input
|
| 73 |
+
st.subheader("π Ask your question")
|
| 74 |
sample_queries = df['query'].dropna().unique().tolist()
|
| 75 |
+
col1, col2 = st.columns([3, 1])
|
| 76 |
+
with col1:
|
| 77 |
+
query = st.text_input("Enter your question here:")
|
| 78 |
+
with col2:
|
| 79 |
+
if st.button("π² Random Sample"):
|
| 80 |
+
query = random.choice(sample_queries)
|
| 81 |
+
st.experimental_rerun()
|
| 82 |
+
|
| 83 |
+
# Handle query
|
| 84 |
if query:
|
| 85 |
st.markdown(f"**Your Query:** {query}")
|
| 86 |
+
|
| 87 |
+
with st.spinner("π Retrieving relevant context..."):
|
| 88 |
contexts = retrieve_context(query, embed_model, index, df)
|
| 89 |
combined_context = "\n\n".join(contexts)
|
| 90 |
+
|
| 91 |
+
with st.spinner("π€ Querying Groq LLM..."):
|
| 92 |
answer = ask_groq(query, combined_context)
|
| 93 |
+
|
| 94 |
st.markdown("### π‘ Answer")
|
| 95 |
st.write(answer)
|
| 96 |
+
|
| 97 |
st.markdown("### π Retrieved Context")
|
| 98 |
for i, ctx in enumerate(contexts, 1):
|
| 99 |
+
with st.expander(f"Context {i}"):
|
| 100 |
+
st.write(ctx)
|