amro-alasri's picture
Upload folder using huggingface_hub
e669ccc verified
# flake8: noqa: E501
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Model backend service for Depth Anything 3.
Provides HTTP API for model inference with persistent model loading.
"""
import gc
import os
import posixpath
import time
import uuid
from concurrent.futures import ThreadPoolExecutor
from typing import Any, Dict, List, Optional
from urllib.parse import quote
import numpy as np
import torch
import uvicorn
from fastapi import FastAPI, HTTPException
from fastapi.responses import FileResponse, HTMLResponse
from pydantic import BaseModel
from ..api import DepthAnything3
class InferenceRequest(BaseModel):
"""Request model for inference API."""
image_paths: List[str]
export_dir: Optional[str] = None
export_format: str = "mini_npz-glb"
extrinsics: Optional[List[List[List[float]]]] = None
intrinsics: Optional[List[List[List[float]]]] = None
process_res: int = 504
process_res_method: str = "upper_bound_resize"
export_feat_layers: List[int] = []
align_to_input_ext_scale: bool = True
# GLB export parameters
conf_thresh_percentile: float = 40.0
num_max_points: int = 1_000_000
show_cameras: bool = True
# Feat_vis export parameters
feat_vis_fps: int = 15
class InferenceResponse(BaseModel):
"""Response model for inference API."""
success: bool
message: str
task_id: Optional[str] = None
export_dir: Optional[str] = None
export_format: str = "mini_npz-glb"
processing_time: Optional[float] = None
class TaskStatus(BaseModel):
"""Task status model."""
task_id: str
status: str # "pending", "running", "completed", "failed"
message: str
progress: Optional[float] = None # 0.0 to 1.0
created_at: float
started_at: Optional[float] = None
completed_at: Optional[float] = None
export_dir: Optional[str] = None
request: Optional[InferenceRequest] = None # Store the original request
# Essential task parameters
num_images: Optional[int] = None # Number of input images
export_format: Optional[str] = None # Export format
process_res_method: Optional[str] = None # Processing resolution method
video_path: Optional[str] = None # Source video path
class ModelBackend:
"""Model backend service with persistent model loading."""
def __init__(self, model_dir: str, device: str = "cuda"):
self.model_dir = model_dir
self.device = device
self.model = None
self.model_loaded = False
self.load_time = None
self.load_start_time = None # Time when model loading started
self.load_completed_time = None # Time when model loading completed
self.last_used = None
def load_model(self):
"""Load model if not already loaded."""
if self.model_loaded and self.model is not None:
self.last_used = time.time()
return self.model
try:
print(f"Loading model from {self.model_dir}...")
self.load_start_time = time.time()
start_time = time.time()
self.model = DepthAnything3.from_pretrained(self.model_dir).to(self.device)
self.model.eval()
self.model_loaded = True
self.load_time = time.time() - start_time
self.load_completed_time = time.time()
self.last_used = time.time()
print(f"Model loaded successfully in {self.load_time:.2f}s")
return self.model
except Exception as e:
print(f"Failed to load model: {e}")
raise e
def get_model(self):
"""Get model, loading if necessary."""
if not self.model_loaded:
return self.load_model()
self.last_used = time.time()
return self.model
def get_status(self) -> Dict[str, Any]:
"""Get backend status information."""
# Calculate uptime from when model loading completed
uptime = 0
if self.model_loaded and self.load_completed_time:
uptime = time.time() - self.load_completed_time
return {
"model_loaded": self.model_loaded,
"model_dir": self.model_dir,
"device": self.device,
"load_time": self.load_time,
"last_used": self.last_used,
"uptime": uptime,
}
# Global backend instance
_backend: Optional[ModelBackend] = None
_app: Optional[FastAPI] = None
_tasks: Dict[str, TaskStatus] = {}
_executor = ThreadPoolExecutor(max_workers=1) # Restrict to single-task execution
_running_task_id: Optional[str] = None # Currently running task ID
_task_queue: List[str] = [] # Pending task queue
# Task cleanup configuration
MAX_TASK_HISTORY = 100 # Maximum number of tasks to keep in memory
CLEANUP_INTERVAL = 300 # Cleanup interval in seconds (5 minutes)
def _process_next_task():
"""Process the next task in the queue."""
global _task_queue, _running_task_id
if not _task_queue or _running_task_id is not None:
return
# Get next task from queue
task_id = _task_queue.pop(0)
# Get task request from tasks dict (we need to store the request)
if task_id not in _tasks:
return
# Submit task to executor
_executor.submit(_run_inference_task, task_id)
def _get_gpu_memory_info():
"""Get current GPU memory usage information."""
if not torch.cuda.is_available():
return None
try:
device = torch.cuda.current_device()
total_memory = torch.cuda.get_device_properties(device).total_memory
allocated_memory = torch.cuda.memory_allocated(device)
reserved_memory = torch.cuda.memory_reserved(device)
free_memory = total_memory - reserved_memory
return {
"total_gb": total_memory / 1024**3,
"allocated_gb": allocated_memory / 1024**3,
"reserved_gb": reserved_memory / 1024**3,
"free_gb": free_memory / 1024**3,
"utilization": (reserved_memory / total_memory) * 100,
}
except Exception as e:
print(f"Warning: Failed to get GPU memory info: {e}")
return None
def _cleanup_cuda_memory():
"""Helper function to perform comprehensive CUDA memory cleanup."""
try:
if torch.cuda.is_available():
# Log memory before cleanup
mem_before = _get_gpu_memory_info()
torch.cuda.synchronize()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
gc.collect()
# Log memory after cleanup
mem_after = _get_gpu_memory_info()
if mem_before and mem_after:
freed = mem_before["reserved_gb"] - mem_after["reserved_gb"]
print(
f"CUDA cleanup: freed {freed:.2f}GB, "
f"available: {mem_after['free_gb']:.2f}GB/{mem_after['total_gb']:.2f}GB"
)
else:
print("CUDA memory cleanup completed")
except Exception as e:
print(f"Warning: CUDA cleanup failed: {e}")
def _check_memory_availability(required_gb: float = 2.0) -> tuple[bool, str]:
"""
Check if there's enough GPU memory available.
Args:
required_gb: Minimum required memory in GB
Returns:
Tuple of (is_available, message)
"""
if not torch.cuda.is_available():
return False, "CUDA is not available"
try:
mem_info = _get_gpu_memory_info()
if mem_info is None:
return True, "Cannot check memory, proceeding anyway"
if mem_info["free_gb"] < required_gb:
return False, (
f"Insufficient GPU memory: {mem_info['free_gb']:.2f}GB available, "
f"{required_gb:.2f}GB required. "
f"Total: {mem_info['total_gb']:.2f}GB, "
f"Used: {mem_info['reserved_gb']:.2f}GB ({mem_info['utilization']:.1f}%)"
)
return True, (
f"Memory check passed: {mem_info['free_gb']:.2f}GB available, "
f"{required_gb:.2f}GB required"
)
except Exception as e:
return True, f"Memory check failed: {e}, proceeding anyway"
def _estimate_memory_requirement(num_images: int, process_res: int) -> float:
"""
Estimate GPU memory requirement in GB.
Args:
num_images: Number of images to process
process_res: Processing resolution
Returns:
Estimated memory requirement in GB
"""
# Rough estimation: base model (2GB) + per-image overhead
base_memory = 2.0
per_image_memory = (process_res / 504) ** 2 * 0.5 # Scale with resolution
total_memory = base_memory + (
num_images * per_image_memory * 0.1
) # Batch processing reduces per-image cost
return total_memory
def _run_inference_task(task_id: str):
"""Run inference task in background thread with OOM protection."""
global _tasks, _backend, _running_task_id, _task_queue
model = None
inference_started = False
start_time = time.time()
try:
# Get task request
if task_id not in _tasks or _tasks[task_id].request is None:
print(f"[{task_id}] Task not found or request missing")
return
request = _tasks[task_id].request
num_images = len(request.image_paths)
# Set current running task
_running_task_id = task_id
# Update task status to running
_tasks[task_id].status = "running"
_tasks[task_id].started_at = start_time
_tasks[task_id].message = f"[{task_id}] Starting inference on {num_images} frames..."
print(f"[{task_id}] Starting inference on {num_images} frames")
# Pre-inference cleanup to ensure maximum available memory
print(f"[{task_id}] Pre-inference cleanup...")
_cleanup_cuda_memory()
# Check memory availability
estimated_memory = _estimate_memory_requirement(num_images, request.process_res)
mem_available, mem_msg = _check_memory_availability(estimated_memory)
print(f"[{task_id}] {mem_msg}")
if not mem_available:
# Try aggressive cleanup
print(f"[{task_id}] Insufficient memory, attempting aggressive cleanup...")
_cleanup_cuda_memory()
time.sleep(0.5) # Give system time to reclaim memory
# Check again
mem_available, mem_msg = _check_memory_availability(estimated_memory)
if not mem_available:
raise RuntimeError(
f"Insufficient GPU memory after cleanup. {mem_msg}\n"
f"Suggestions:\n"
f" 1. Reduce process_res (current: {request.process_res})\n"
f" 2. Process fewer images at once (current: {num_images})\n"
f" 3. Clear other GPU processes"
)
# Get model (with error handling)
print(f"[{task_id}] Loading model...")
_tasks[task_id].message = f"[{task_id}] Loading model..."
_tasks[task_id].progress = 0.1
try:
model = _backend.get_model()
except RuntimeError as e:
if "out of memory" in str(e).lower():
_cleanup_cuda_memory()
raise RuntimeError(
f"OOM during model loading: {str(e)}\n"
f"Try reducing the batch size or resolution."
)
raise
print(f"[{task_id}] Model loaded successfully")
_tasks[task_id].progress = 0.2
# Prepare inference parameters
inference_kwargs = {
"image": request.image_paths,
"export_format": request.export_format,
"process_res": request.process_res,
"process_res_method": request.process_res_method,
"export_feat_layers": request.export_feat_layers,
"align_to_input_ext_scale": request.align_to_input_ext_scale,
"conf_thresh_percentile": request.conf_thresh_percentile,
"num_max_points": request.num_max_points,
"show_cameras": request.show_cameras,
"feat_vis_fps": request.feat_vis_fps,
}
if request.export_dir:
inference_kwargs["export_dir"] = request.export_dir
if request.extrinsics:
inference_kwargs["extrinsics"] = np.array(request.extrinsics, dtype=np.float32)
if request.intrinsics:
inference_kwargs["intrinsics"] = np.array(request.intrinsics, dtype=np.float32)
# Run inference with timing
inference_start_time = time.time()
print(f"[{task_id}] Running model inference...")
_tasks[task_id].message = f"[{task_id}] Running model inference on {num_images} images..."
_tasks[task_id].progress = 0.3
inference_started = True
try:
model.inference(**inference_kwargs)
inference_time = time.time() - inference_start_time
avg_time_per_image = inference_time / num_images if num_images > 0 else 0
print(
f"[{task_id}] Inference completed in {inference_time:.2f}s "
f"({avg_time_per_image:.2f}s per image)"
)
except RuntimeError as e:
if "out of memory" in str(e).lower():
_cleanup_cuda_memory()
raise RuntimeError(
f"OOM during inference: {str(e)}\n"
f"Settings: {num_images} images, resolution={request.process_res}\n"
f"Suggestions:\n"
f" 1. Reduce process_res to {int(request.process_res * 0.75)}\n"
f" 2. Process images in smaller batches\n"
f" 3. Use process_res_method='resize' instead of 'upper_bound_resize'"
)
raise
_tasks[task_id].progress = 0.9
# Post-inference cleanup
print(f"[{task_id}] Post-inference cleanup...")
_cleanup_cuda_memory()
# Calculate total processing time
total_time = time.time() - start_time
# Update task status to completed
_tasks[task_id].status = "completed"
_tasks[task_id].completed_at = time.time()
_tasks[task_id].message = (
f"[{task_id}] Completed in {total_time:.2f}s " f"({avg_time_per_image:.2f}s per image)"
)
_tasks[task_id].progress = 1.0
_tasks[task_id].export_dir = request.export_dir
# Clear running state
_running_task_id = None
# Process next task in queue
_process_next_task()
print(f"[{task_id}] Task completed successfully")
print(
f"[{task_id}] Total time: {total_time:.2f}s, "
f"Inference time: {inference_time:.2f}s, "
f"Avg per image: {avg_time_per_image:.2f}s"
)
except Exception as e:
# Update task status to failed
error_msg = str(e)
total_time = time.time() - start_time
print(f"[{task_id}] Task failed after {total_time:.2f}s: {error_msg}")
# Always attempt cleanup on failure
_cleanup_cuda_memory()
_tasks[task_id].status = "failed"
_tasks[task_id].completed_at = time.time()
_tasks[task_id].message = f"[{task_id}] Failed after {total_time:.2f}s: {error_msg}"
# Clear running state
_running_task_id = None
# Process next task in queue
_process_next_task()
finally:
# Final cleanup in finally block to ensure it always runs
# This is critical for releasing resources even if unexpected errors occur
try:
if inference_started:
print(f"[{task_id}] Final cleanup in finally block...")
_cleanup_cuda_memory()
except Exception as e:
print(f"[{task_id}] Warning: Finally block cleanup failed: {e}")
# Schedule cleanup after task completion
_schedule_task_cleanup()
def _cleanup_old_tasks():
"""Clean up old completed/failed tasks to prevent memory buildup."""
global _tasks
current_time = time.time()
tasks_to_remove = []
# Find tasks to remove - more aggressive cleanup
for task_id, task in _tasks.items():
# Remove completed/failed tasks older than 10 minutes (instead of 1 hour)
if (
task.status in ["completed", "failed"]
and task.completed_at
and current_time - task.completed_at > 600
): # 10 minutes
tasks_to_remove.append(task_id)
# Remove old tasks
for task_id in tasks_to_remove:
del _tasks[task_id]
print(f"[CLEANUP] Removed old task: {task_id}")
# If still too many tasks, remove oldest completed/failed tasks
if len(_tasks) > MAX_TASK_HISTORY:
completed_tasks = [
(task_id, task)
for task_id, task in _tasks.items()
if task.status in ["completed", "failed"]
]
completed_tasks.sort(key=lambda x: x[1].completed_at or 0)
excess_count = len(_tasks) - MAX_TASK_HISTORY
for i in range(min(excess_count, len(completed_tasks))):
task_id = completed_tasks[i][0]
del _tasks[task_id]
print(f"[CLEANUP] Removed excess task: {task_id}")
# Count active tasks (only pending and running)
active_count = sum(1 for task in _tasks.values() if task.status in ["pending", "running"])
print(
"[CLEANUP] Task cleanup completed. "
f"Total tasks: {len(_tasks)}, Active tasks: {active_count}"
)
def _schedule_task_cleanup():
"""Schedule task cleanup in background."""
def cleanup_worker():
try:
time.sleep(2) # Small delay to ensure task status is updated
_cleanup_old_tasks()
except Exception as e:
print(f"[CLEANUP] Cleanup worker failed: {e}")
# Run cleanup in background thread
_executor.submit(cleanup_worker)
#