Spaces:
Paused
Paused
Commit
·
33ad5e9
1
Parent(s):
4296400
take out the trash
Browse files
app.py
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
from threading import Thread
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import streamlit as st
|
| 4 |
|
|
@@ -7,43 +9,57 @@ from transformers import AutoTokenizer, TextIteratorStreamer, set_seed
|
|
| 7 |
from modeling_tricksy import TricksyOPTForCausalLM, OPTDiskWeights
|
| 8 |
from configuration_tricksy import TricksyConfig
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
model_name = 'facebook/opt-6.7b'
|
| 15 |
-
disk_weights = OPTDiskWeights(model_name)
|
| 16 |
-
tricksy_model = TricksyOPTForCausalLM(TricksyConfig(disk_weights.config, full_offload=(not use_tricksy)), disk_weights)
|
| 17 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 18 |
-
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
| 19 |
-
|
| 20 |
-
inputs = tokenizer(prompt, return_tensors='pt').input_ids.to('cuda')
|
| 21 |
-
|
| 22 |
-
print()
|
| 23 |
-
generation_kwargs = dict(inputs=inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_k=top_k, top_p=top_p)
|
| 24 |
-
thread = Thread(target=tricksy_model.generate, kwargs=generation_kwargs)
|
| 25 |
-
thread.start()
|
| 26 |
-
generated_text = ''
|
| 27 |
-
with st.chat_message("user"):
|
| 28 |
-
t = st.empty()
|
| 29 |
-
for new_text in streamer:
|
| 30 |
-
generated_text += new_text.replace('\n', ' \n')
|
| 31 |
-
t.write(generated_text)
|
| 32 |
-
|
| 33 |
-
stats_text = f'Decoding tok/s: {1 / (sum(tricksy_model.tricksy_context.forward_times[1:]) / (len(tricksy_model.tricksy_context.forward_times) - 1))}'
|
| 34 |
-
stats_text += f' \nCurrent GPU mem usage: {torch.cuda.memory_allocated("cuda") / 1024 ** 3} GB'
|
| 35 |
-
stats_text += f' \nMax GPU mem usage: {torch.cuda.max_memory_allocated("cuda") / 1024 ** 3} GB'
|
| 36 |
-
st.write(stats_text)
|
| 37 |
|
| 38 |
prompt = st.text_area('Prompt', 'Making pesto from scratch can be done with these ingredients in 4 simple steps:\nStep 1')
|
| 39 |
|
| 40 |
col1, col2 = st.columns(2)
|
| 41 |
-
with col1:
|
| 42 |
-
submit = st.button('Submit', on_click=generate)
|
| 43 |
-
with col2:
|
| 44 |
-
use_tricksy = st.toggle('Use Tricksy', True, help='If true, only send sparse MLP weight diffs to GPU. If false, send all weights to GPU.')
|
| 45 |
|
| 46 |
with st.expander('Additional options'):
|
| 47 |
-
max_new_tokens = st.slider('Max new tokens', 1, 500,
|
| 48 |
top_k = st.slider('Top-k sampling', 1, 500, 50)
|
| 49 |
-
top_p = st.slider('Top-p (nucleus sampling)', 0.0, 1.0, .9)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from threading import Thread
|
| 2 |
+
import gc
|
| 3 |
+
import time
|
| 4 |
|
| 5 |
import streamlit as st
|
| 6 |
|
|
|
|
| 9 |
from modeling_tricksy import TricksyOPTForCausalLM, OPTDiskWeights
|
| 10 |
from configuration_tricksy import TricksyConfig
|
| 11 |
|
| 12 |
+
if 'submit' in st.session_state and st.session_state.submit == True:
|
| 13 |
+
st.session_state.generating = True
|
| 14 |
+
else:
|
| 15 |
+
st.session_state.generating = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
prompt = st.text_area('Prompt', 'Making pesto from scratch can be done with these ingredients in 4 simple steps:\nStep 1')
|
| 18 |
|
| 19 |
col1, col2 = st.columns(2)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
with st.expander('Additional options'):
|
| 22 |
+
max_new_tokens = st.slider('Max new tokens', 1, 500, 50)
|
| 23 |
top_k = st.slider('Top-k sampling', 1, 500, 50)
|
| 24 |
+
top_p = st.slider('Top-p (nucleus sampling)', 0.0, 1.0, .9)
|
| 25 |
+
|
| 26 |
+
out = st.chat_message('user')
|
| 27 |
+
stats = st.empty()
|
| 28 |
+
|
| 29 |
+
with col1:
|
| 30 |
+
use_tricksy = st.toggle('Use Tricksy', True, help='If true, only send sparse MLP weight diffs to GPU. If false, send all weights to GPU.')
|
| 31 |
+
with col2:
|
| 32 |
+
if st.button('Submit', disabled=st.session_state.generating, key='submit'):
|
| 33 |
+
set_seed(42)
|
| 34 |
+
# 13.4 GB (16 bit)
|
| 35 |
+
model_name = 'facebook/opt-6.7b'
|
| 36 |
+
disk_weights = OPTDiskWeights(model_name)
|
| 37 |
+
tricksy_model = TricksyOPTForCausalLM(TricksyConfig(disk_weights.config, full_offload=(not use_tricksy)), disk_weights)
|
| 38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 39 |
+
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
| 40 |
+
|
| 41 |
+
inputs = tokenizer(prompt, return_tensors='pt').input_ids.to('cuda')
|
| 42 |
+
|
| 43 |
+
print()
|
| 44 |
+
generation_kwargs = dict(inputs=inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_k=top_k, top_p=top_p)
|
| 45 |
+
thread = Thread(target=tricksy_model.generate, kwargs=generation_kwargs)
|
| 46 |
+
thread.start()
|
| 47 |
+
generated_text = ''
|
| 48 |
+
with out:
|
| 49 |
+
t = st.empty()
|
| 50 |
+
for new_text in streamer:
|
| 51 |
+
generated_text += new_text.replace('\n', ' \n')
|
| 52 |
+
t.write(generated_text)
|
| 53 |
+
|
| 54 |
+
stats_text = f'Decoding tok/s: {1 / (sum(tricksy_model.tricksy_context.forward_times[1:]) / (len(tricksy_model.tricksy_context.forward_times) - 1))}'
|
| 55 |
+
stats_text += f' \nCurrent GPU mem usage: {torch.cuda.memory_allocated("cuda") / 1024 ** 3} GB'
|
| 56 |
+
stats_text += f' \nMax GPU mem usage: {torch.cuda.max_memory_allocated("cuda") / 1024 ** 3} GB'
|
| 57 |
+
stats.write(stats_text)
|
| 58 |
+
|
| 59 |
+
disk_weights = None
|
| 60 |
+
tricksy_model = None
|
| 61 |
+
time.sleep(.2)
|
| 62 |
+
# st.write(f'num open files: {len(psutil.Process().open_files())}')
|
| 63 |
+
torch.cuda.empty_cache()
|
| 64 |
+
gc.collect()
|
| 65 |
+
torch.cuda.reset_peak_memory_stats()
|