Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -196,9 +196,9 @@ def save_to_cosmos_db(query, response1, response2):
|
|
| 196 |
else:
|
| 197 |
st.error("Cosmos DB is not initialized.")
|
| 198 |
|
| 199 |
-
|
|
|
|
| 200 |
def search_glossary(query):
|
| 201 |
-
# π Searching the glossaryβuncovering secrets of the universe! π΅οΈββοΈ
|
| 202 |
st.markdown(f"### π Search Glossary for: `{query}`")
|
| 203 |
|
| 204 |
# Dropdown for model selection
|
|
@@ -209,12 +209,85 @@ def search_glossary(query):
|
|
| 209 |
database_options = ['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)']
|
| 210 |
database_choice = st.selectbox('π Select Database', options=database_options, index=0)
|
| 211 |
|
|
|
|
|
|
|
| 212 |
# Run Button with Emoji
|
| 213 |
if st.button("π Run"):
|
| 214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
# π€ Function to process text input
|
| 220 |
def process_text(text_input):
|
|
|
|
| 196 |
else:
|
| 197 |
st.error("Cosmos DB is not initialized.")
|
| 198 |
|
| 199 |
+
|
| 200 |
+
# Add dropdowns for model and database choices
|
| 201 |
def search_glossary(query):
|
|
|
|
| 202 |
st.markdown(f"### π Search Glossary for: `{query}`")
|
| 203 |
|
| 204 |
# Dropdown for model selection
|
|
|
|
| 209 |
database_options = ['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)']
|
| 210 |
database_choice = st.selectbox('π Select Database', options=database_options, index=0)
|
| 211 |
|
| 212 |
+
|
| 213 |
+
|
| 214 |
# Run Button with Emoji
|
| 215 |
if st.button("π Run"):
|
| 216 |
+
|
| 217 |
+
# π΅οΈββοΈ Searching the glossary for: query
|
| 218 |
+
all_results = ""
|
| 219 |
+
st.markdown(f"- {query}")
|
| 220 |
+
|
| 221 |
+
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
|
| 222 |
+
#database_choice Literal['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)'] Default: "Semantic Search"
|
| 223 |
+
#llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
|
| 224 |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
|
| 228 |
+
result = client.predict(
|
| 229 |
+
prompt=query,
|
| 230 |
+
llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 231 |
+
stream_outputs=True,
|
| 232 |
+
api_name="/ask_llm"
|
| 233 |
+
)
|
| 234 |
+
st.markdown(result)
|
| 235 |
+
st.code(result, language="python", line_numbers=True)
|
| 236 |
+
save_to_cosmos_db(query, result, result) # Save both responses to Cosmos DB
|
| 237 |
+
|
| 238 |
+
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
|
| 239 |
+
result2 = client.predict(
|
| 240 |
+
prompt=query,
|
| 241 |
+
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
|
| 242 |
+
stream_outputs=True,
|
| 243 |
+
api_name="/ask_llm"
|
| 244 |
+
)
|
| 245 |
+
st.markdown(result2)
|
| 246 |
+
st.code(result2, language="python", line_numbers=True)
|
| 247 |
+
save_to_cosmos_db(query, result2, result2) # Save both responses to Cosmos DB
|
| 248 |
+
|
| 249 |
+
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
|
| 250 |
+
result3 = client.predict(
|
| 251 |
+
prompt=query,
|
| 252 |
+
llm_model_picked="google/gemma-7b-it",
|
| 253 |
+
stream_outputs=True,
|
| 254 |
+
api_name="/ask_llm"
|
| 255 |
+
)
|
| 256 |
+
st.markdown(result3)
|
| 257 |
+
st.code(result3, language="python", line_numbers=True)
|
| 258 |
+
save_to_cosmos_db(query, result3, result3) # Save both responses to Cosmos DB
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /update_with_rag_md
|
| 262 |
+
response2 = client.predict(
|
| 263 |
+
message=query, # str in 'parameter_13' Textbox component
|
| 264 |
+
llm_results_use=10,
|
| 265 |
+
database_choice="Semantic Search",
|
| 266 |
+
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
|
| 267 |
+
api_name="/update_with_rag_md"
|
| 268 |
+
) # update_with_rag_md Returns tuple of 2 elements [0] str The output value that appears in the "value_14" Markdown component. [1] str
|
| 269 |
+
|
| 270 |
+
st.markdown(response2[0])
|
| 271 |
+
st.code(response2[0], language="python", line_numbers=True, wrap_lines=True)
|
| 272 |
+
save_to_cosmos_db(query, response2[0], response2[0]) # Save both responses to Cosmos DB
|
| 273 |
+
|
| 274 |
+
st.markdown(response2[1])
|
| 275 |
+
st.code(response2[1], language="python", line_numbers=True, wrap_lines=True)
|
| 276 |
+
save_to_cosmos_db(query, response2[1], response2[1]) # Save both responses to Cosmos DB
|
| 277 |
+
|
| 278 |
|
| 279 |
+
# Aggregate hyperlinks and show with emojis
|
| 280 |
+
hyperlinks = extract_hyperlinks([response1, response2])
|
| 281 |
+
st.markdown("### π Aggregated Hyperlinks")
|
| 282 |
+
for link in hyperlinks:
|
| 283 |
+
st.markdown(f"π [{link}]({link})")
|
| 284 |
+
|
| 285 |
+
# Show responses in a code format with line numbers
|
| 286 |
+
st.markdown("### π Response Outputs with Line Numbers")
|
| 287 |
+
st.code(f"Response 1: \n{format_with_line_numbers(response1)}\n\nResponse 2: \n{format_with_line_numbers(response2)}", language="json")
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
|
| 291 |
|
| 292 |
# π€ Function to process text input
|
| 293 |
def process_text(text_input):
|