Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -427,7 +427,7 @@ def display_papers(papers):
|
|
| 427 |
for idx, paper in enumerate(papers):
|
| 428 |
papercount = papercount + 1
|
| 429 |
if (papercount<=20):
|
| 430 |
-
with st.expander(f"📄 {paper['title']}", expanded=True):
|
| 431 |
st.markdown(f"**{paper['date']} | {paper['title']} | ⬇️**")
|
| 432 |
st.markdown(f"*{paper['authors']}*")
|
| 433 |
st.markdown(paper['summary'])
|
|
@@ -820,6 +820,87 @@ def main():
|
|
| 820 |
if st.button("❌ Close"):
|
| 821 |
st.session_state.viewing_prefix = None
|
| 822 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 823 |
if st.session_state.should_rerun:
|
| 824 |
st.session_state.should_rerun = False
|
| 825 |
st.rerun()
|
|
|
|
| 427 |
for idx, paper in enumerate(papers):
|
| 428 |
papercount = papercount + 1
|
| 429 |
if (papercount<=20):
|
| 430 |
+
with st.expander(f"{papercount}. 📄 {paper['title']}", expanded=True):
|
| 431 |
st.markdown(f"**{paper['date']} | {paper['title']} | ⬇️**")
|
| 432 |
st.markdown(f"*{paper['authors']}*")
|
| 433 |
st.markdown(paper['summary'])
|
|
|
|
| 820 |
if st.button("❌ Close"):
|
| 821 |
st.session_state.viewing_prefix = None
|
| 822 |
|
| 823 |
+
markdownPapers = """
|
| 824 |
+
|
| 825 |
+
# Levels of AGI
|
| 826 |
+
|
| 827 |
+
## 1. Performance (rows) x Generality (columns)
|
| 828 |
+
- **Narrow**
|
| 829 |
+
- *clearly scoped or set of tasks*
|
| 830 |
+
- **General**
|
| 831 |
+
- *wide range of non-physical tasks, including metacognitive abilities like learning new skills*
|
| 832 |
+
|
| 833 |
+
## 2. Levels of AGI
|
| 834 |
+
|
| 835 |
+
### 2.1 Level 0: No AI
|
| 836 |
+
- **Narrow Non-AI**
|
| 837 |
+
- Calculator software; compiler
|
| 838 |
+
- **General Non-AI**
|
| 839 |
+
- Human-in-the-loop computing, e.g., Amazon Mechanical Turk
|
| 840 |
+
|
| 841 |
+
### 2.2 Level 1: Emerging
|
| 842 |
+
*equal to or somewhat better than an unskilled human*
|
| 843 |
+
- **Emerging Narrow AI**
|
| 844 |
+
- GOFAI; simple rule-based systems
|
| 845 |
+
- Example: SHRDLU
|
| 846 |
+
- *Reference:* Winograd, T. (1971). **Procedures as a Representation for Data in a Computer Program for Understanding Natural Language**. MIT AI Technical Report. [Link](https://dspace.mit.edu/handle/1721.1/7095)
|
| 847 |
+
- **Emerging AGI**
|
| 848 |
+
- ChatGPT (OpenAI, 2023)
|
| 849 |
+
- Bard (Anil et al., 2023)
|
| 850 |
+
- *Reference:* Anil, R., et al. (2023). **Bard: Google’s AI Chatbot**. [arXiv](https://arxiv.org/abs/2303.12712)
|
| 851 |
+
- LLaMA 2 (Touvron et al., 2023)
|
| 852 |
+
- *Reference:* Touvron, H., et al. (2023). **LLaMA 2: Open and Efficient Foundation Language Models**. [arXiv](https://arxiv.org/abs/2307.09288)
|
| 853 |
+
|
| 854 |
+
### 2.3 Level 2: Competent
|
| 855 |
+
*at least 50th percentile of skilled adults*
|
| 856 |
+
- **Competent Narrow AI**
|
| 857 |
+
- Toxicity detectors such as Jigsaw
|
| 858 |
+
- *Reference:* Das, S., et al. (2022). **Toxicity Detection at Scale with Jigsaw**. [arXiv](https://arxiv.org/abs/2204.06905)
|
| 859 |
+
- Smart Speakers (Apple, Amazon, Google)
|
| 860 |
+
- VQA systems (PaLI)
|
| 861 |
+
- *Reference:* Chen, T., et al. (2023). **PaLI: Pathways Language and Image model**. [arXiv](https://arxiv.org/abs/2301.01298)
|
| 862 |
+
- Watson (IBM)
|
| 863 |
+
- SOTA LLMs for subsets of tasks
|
| 864 |
+
- **Competent AGI**
|
| 865 |
+
- Not yet achieved
|
| 866 |
+
|
| 867 |
+
### 2.4 Level 3: Expert
|
| 868 |
+
*at least 90th percentile of skilled adults*
|
| 869 |
+
- **Expert Narrow AI**
|
| 870 |
+
- Spelling & grammar checkers (Grammarly, 2023)
|
| 871 |
+
- Generative image models
|
| 872 |
+
- Example: Imagen
|
| 873 |
+
- *Reference:* Saharia, C., et al. (2022). **Imagen: Photorealistic Text-to-Image Diffusion Models**. [arXiv](https://arxiv.org/abs/2205.11487)
|
| 874 |
+
- Example: DALL·E 2
|
| 875 |
+
- *Reference:* Ramesh, A., et al. (2022). **Hierarchical Text-Conditional Image Generation with CLIP Latents**. [arXiv](https://arxiv.org/abs/2204.06125)
|
| 876 |
+
- **Expert AGI**
|
| 877 |
+
- Not yet achieved
|
| 878 |
+
|
| 879 |
+
### 2.5 Level 4: Virtuoso
|
| 880 |
+
*at least 99th percentile of skilled adults*
|
| 881 |
+
- **Virtuoso Narrow AI**
|
| 882 |
+
- Deep Blue
|
| 883 |
+
- *Reference:* Campbell, M., et al. (2002). **Deep Blue**. IBM Journal of Research and Development. [Link](https://research.ibm.com/publications/deep-blue)
|
| 884 |
+
- AlphaGo
|
| 885 |
+
- *Reference:* Silver, D., et al. (2016, 2017). **Mastering the Game of Go with Deep Neural Networks and Tree Search**. [Nature](https://www.nature.com/articles/nature16961)
|
| 886 |
+
- **Virtuoso AGI**
|
| 887 |
+
- Not yet achieved
|
| 888 |
+
|
| 889 |
+
### 2.6 Level 5: Superhuman
|
| 890 |
+
*outperforms 100% of humans*
|
| 891 |
+
- **Superhuman Narrow AI**
|
| 892 |
+
- AlphaFold
|
| 893 |
+
- *Reference:* Jumper, J., et al. (2021). **Highly Accurate Protein Structure Prediction with AlphaFold**. [Nature](https://www.nature.com/articles/s41586-021-03819-2)
|
| 894 |
+
- AlphaZero
|
| 895 |
+
- *Reference:* Silver, D., et al. (2018). **A General Reinforcement Learning Algorithm that Masters Chess, Shogi, and Go through Self-Play**. [Science](https://www.science.org/doi/10.1126/science.aar6404)
|
| 896 |
+
- StockFish
|
| 897 |
+
- *Reference:* Stockfish (2023). **Stockfish Chess Engine**. [Website](https://stockfishchess.org)
|
| 898 |
+
- **Artificial Superintelligence (ASI)**
|
| 899 |
+
- Not yet achieved
|
| 900 |
+
|
| 901 |
+
"""
|
| 902 |
+
st.sidebar.markdown(markdownPapers)
|
| 903 |
+
|
| 904 |
if st.session_state.should_rerun:
|
| 905 |
st.session_state.should_rerun = False
|
| 906 |
st.rerun()
|