Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoProcessor, AutoModelForImageTextToText | |
| from PIL import Image | |
| import base64 | |
| from io import BytesIO | |
| import os | |
| # Load model & processor once at startup | |
| processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
| model = AutoModelForImageTextToText.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
| def convert_to_pil(image_input: str) -> Image.Image: | |
| """ | |
| Convert base64 or file path string to PIL.Image. | |
| Args: | |
| image_input: Base64 encoded string or file path | |
| Returns: | |
| PIL.Image.Image object | |
| """ | |
| # Check if it's a base64 string | |
| if image_input.startswith('data:image'): | |
| # Remove data:image/jpeg;base64, prefix | |
| base64_str = image_input.split(',', 1)[1] | |
| image_data = base64.b64decode(base64_str) | |
| return Image.open(BytesIO(image_data)) | |
| elif ',' in image_input and len(image_input) > 100: | |
| # Might be base64 without prefix | |
| try: | |
| image_data = base64.b64decode(image_input) | |
| return Image.open(BytesIO(image_data)) | |
| except: | |
| pass | |
| # Assume it's a file path | |
| if os.path.exists(image_input): | |
| return Image.open(image_input) | |
| raise ValueError(f"Could not convert image input to PIL.Image: {type(image_input)}") | |
| def smoldocling_readimage(image: str, prompt_text: str) -> str: | |
| """ | |
| Extract text and structured content from document images using SmolDocling model. | |
| This function processes document images (PDFs, scanned documents, screenshots, etc.) | |
| and converts them to structured text format based on the provided prompt. It uses | |
| the SmolDocling-256M-preview model for image-to-text conversion with chat-based prompting. | |
| Args: | |
| image (str): The input document image as base64 encoded string or file path. | |
| MCP clients will send this as base64. | |
| prompt_text (str): The instruction or prompt text that guides the model's output format. | |
| Supported prompts include: | |
| Content Conversion: | |
| - "Convert this page to docling." - Full conversion to DocTags representation | |
| - "Convert chart to table." - Convert charts to table format | |
| - "Convert formula to LaTeX." - Convert mathematical formulas to LaTeX | |
| - "Convert code to text." - Convert code blocks to readable text | |
| - "Convert table to OTSL." - Convert tables to OTSL format (Lysak et al., 2023) | |
| OCR and Location-based Actions: | |
| - "OCR the text in a specific location: <loc_155><loc_233><loc_206><loc_237>" | |
| - Extract text from specific coordinates | |
| - "Identify element at: <loc_247><loc_482><loc_252><loc_486>" | |
| - Identify element type at coordinates | |
| - "Find all 'text' elements on the page, retrieve all section headers." | |
| - Extract section headers | |
| - "Detect footer elements on the page." - Identify footer content | |
| Returns: | |
| str: The extracted and formatted text content from the image, cleaned of special | |
| tokens and whitespace. The format depends on the prompt_text provided. | |
| Example: | |
| >>> result = smoldocling_readimage("...", "Convert to docling") | |
| >>> print(result) # Returns structured document content | |
| Note: | |
| - The function is optimized for document images but can handle any image containing text | |
| - Processing time depends on image size and complexity | |
| - Maximum output length is limited to 1024 new tokens | |
| """ | |
| # Convert string input (base64 or path) to PIL.Image | |
| pil_image = convert_to_pil(image) | |
| messages = [ | |
| {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]} | |
| ] | |
| prompt = processor.apply_chat_template(messages, add_generation_prompt=True) | |
| inputs = processor(text=prompt, images=[image], return_tensors="pt") | |
| outputs = model.generate(**inputs, max_new_tokens=1024) | |
| prompt_length = inputs.input_ids.shape[1] | |
| generated = outputs[:, prompt_length:] | |
| result = processor.batch_decode(generated, skip_special_tokens=False)[0] | |
| return result.replace("<end_of_utterance>", "").strip() | |
| # Gradio UI | |
| with gr.Blocks() as demo: | |
| gr.Markdown( | |
| """ | |
| This is a MCP only tool for conversion using smoldocling | |
| This tool is MCP-only, so it does not have a UI. | |
| """ | |
| ) | |
| gr.api( | |
| smoldocling_readimage | |
| ) | |
| _, url, _ = demo.launch(mcp_server=True) |