bharatcoder's picture
Update app.py
1f42ce9 verified
raw
history blame
4.63 kB
import gradio as gr
from transformers import AutoProcessor, AutoModelForImageTextToText
from PIL import Image
import base64
from io import BytesIO
import os
# Load model & processor once at startup
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
model = AutoModelForImageTextToText.from_pretrained("ds4sd/SmolDocling-256M-preview")
def convert_to_pil(image_input: str) -> Image.Image:
"""
Convert base64 or file path string to PIL.Image.
Args:
image_input: Base64 encoded string or file path
Returns:
PIL.Image.Image object
"""
# Check if it's a base64 string
if image_input.startswith('data:image'):
# Remove data:image/jpeg;base64, prefix
base64_str = image_input.split(',', 1)[1]
image_data = base64.b64decode(base64_str)
return Image.open(BytesIO(image_data))
elif ',' in image_input and len(image_input) > 100:
# Might be base64 without prefix
try:
image_data = base64.b64decode(image_input)
return Image.open(BytesIO(image_data))
except:
pass
# Assume it's a file path
if os.path.exists(image_input):
return Image.open(image_input)
raise ValueError(f"Could not convert image input to PIL.Image: {type(image_input)}")
def smoldocling_readimage(image: str, prompt_text: str) -> str:
"""
Extract text and structured content from document images using SmolDocling model.
This function processes document images (PDFs, scanned documents, screenshots, etc.)
and converts them to structured text format based on the provided prompt. It uses
the SmolDocling-256M-preview model for image-to-text conversion with chat-based prompting.
Args:
image (str): The input document image as base64 encoded string or file path.
MCP clients will send this as base64.
prompt_text (str): The instruction or prompt text that guides the model's output format.
Supported prompts include:
Content Conversion:
- "Convert this page to docling." - Full conversion to DocTags representation
- "Convert chart to table." - Convert charts to table format
- "Convert formula to LaTeX." - Convert mathematical formulas to LaTeX
- "Convert code to text." - Convert code blocks to readable text
- "Convert table to OTSL." - Convert tables to OTSL format (Lysak et al., 2023)
OCR and Location-based Actions:
- "OCR the text in a specific location: <loc_155><loc_233><loc_206><loc_237>"
- Extract text from specific coordinates
- "Identify element at: <loc_247><loc_482><loc_252><loc_486>"
- Identify element type at coordinates
- "Find all 'text' elements on the page, retrieve all section headers."
- Extract section headers
- "Detect footer elements on the page." - Identify footer content
Returns:
str: The extracted and formatted text content from the image, cleaned of special
tokens and whitespace. The format depends on the prompt_text provided.
Example:
>>> result = smoldocling_readimage("...", "Convert to docling")
>>> print(result) # Returns structured document content
Note:
- The function is optimized for document images but can handle any image containing text
- Processing time depends on image size and complexity
- Maximum output length is limited to 1024 new tokens
"""
# Convert string input (base64 or path) to PIL.Image
pil_image = convert_to_pil(image)
messages = [
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[image], return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=1024)
prompt_length = inputs.input_ids.shape[1]
generated = outputs[:, prompt_length:]
result = processor.batch_decode(generated, skip_special_tokens=False)[0]
return result.replace("<end_of_utterance>", "").strip()
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown(
"""
This is a MCP only tool for conversion using smoldocling
This tool is MCP-only, so it does not have a UI.
"""
)
gr.api(
smoldocling_readimage
)
_, url, _ = demo.launch(mcp_server=True)