Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -46,23 +46,24 @@ def parse_input(json_input):
|
|
| 46 |
# Function to ensure a value is a float, converting from string if necessary
|
| 47 |
def ensure_float(value):
|
| 48 |
if value is None:
|
| 49 |
-
|
|
|
|
| 50 |
if isinstance(value, str):
|
| 51 |
try:
|
| 52 |
return float(value)
|
| 53 |
except ValueError:
|
| 54 |
logger.error("Failed to convert string '%s' to float", value)
|
| 55 |
-
return
|
| 56 |
if isinstance(value, (int, float)):
|
| 57 |
return float(value)
|
| 58 |
-
return
|
| 59 |
|
| 60 |
# Function to create an empty Plotly figure
|
| 61 |
def create_empty_figure(title):
|
| 62 |
return go.Figure().update_layout(title=title, xaxis_title="", yaxis_title="", showlegend=False)
|
| 63 |
|
| 64 |
-
# Function to process and visualize log probs with
|
| 65 |
-
def visualize_logprobs(json_input
|
| 66 |
try:
|
| 67 |
# Parse the input (handles both JSON and Python dictionaries)
|
| 68 |
data = parse_input(json_input)
|
|
@@ -75,47 +76,36 @@ def visualize_logprobs(json_input, page_size=100, page=0):
|
|
| 75 |
else:
|
| 76 |
raise ValueError("Input must be a list or dictionary with 'content' key")
|
| 77 |
|
| 78 |
-
# Extract tokens, log probs, and top alternatives, skipping
|
| 79 |
tokens = []
|
| 80 |
logprobs = []
|
| 81 |
-
top_alternatives = [] # List to store
|
| 82 |
for entry in content:
|
| 83 |
logprob = ensure_float(entry.get("logprob", None))
|
| 84 |
-
if
|
| 85 |
tokens.append(entry["token"])
|
| 86 |
logprobs.append(logprob)
|
| 87 |
# Get top_logprobs, default to empty dict if None
|
| 88 |
top_probs = entry.get("top_logprobs", {})
|
| 89 |
-
# Ensure all values in top_logprobs are floats
|
| 90 |
-
finite_top_probs =
|
| 91 |
for key, value in top_probs.items():
|
| 92 |
float_value = ensure_float(value)
|
| 93 |
if float_value is not None and math.isfinite(float_value):
|
| 94 |
-
finite_top_probs
|
| 95 |
-
#
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
sorted_probs = sorted(all_probs.items(), key=lambda x: x[1], reverse=True)
|
| 99 |
-
top_3 = sorted_probs[:3] # Top 3 log probs (highest to lowest)
|
| 100 |
-
top_alternatives.append(top_3)
|
| 101 |
else:
|
| 102 |
logger.debug("Skipping entry with logprob: %s (type: %s)", entry.get("logprob"), type(entry.get("logprob", None)))
|
| 103 |
|
| 104 |
# Check if there's valid data after filtering
|
| 105 |
if not logprobs or not tokens:
|
| 106 |
-
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top
|
| 107 |
-
|
| 108 |
-
# Paginate data for large inputs
|
| 109 |
-
total_pages = max(1, (len(logprobs) + page_size - 1) // page_size)
|
| 110 |
-
start_idx = page * page_size
|
| 111 |
-
end_idx = min((page + 1) * page_size, len(logprobs))
|
| 112 |
-
paginated_tokens = tokens[start_idx:end_idx]
|
| 113 |
-
paginated_logprobs = logprobs[start_idx:end_idx]
|
| 114 |
-
paginated_alternatives = top_alternatives[start_idx:end_idx] if top_alternatives else []
|
| 115 |
|
| 116 |
# 1. Main Log Probability Plot (Interactive Plotly)
|
| 117 |
main_fig = go.Figure()
|
| 118 |
-
main_fig.add_trace(go.Scatter(x=list(range(len(
|
| 119 |
main_fig.update_layout(
|
| 120 |
title="Log Probabilities of Generated Tokens",
|
| 121 |
xaxis_title="Token Position",
|
|
@@ -124,15 +114,15 @@ def visualize_logprobs(json_input, page_size=100, page=0):
|
|
| 124 |
clickmode='event+select'
|
| 125 |
)
|
| 126 |
main_fig.update_traces(
|
| 127 |
-
customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i
|
| 128 |
hovertemplate='<b>%{customdata}</b><extra></extra>'
|
| 129 |
)
|
| 130 |
|
| 131 |
# 2. Probability Drop Analysis (Interactive Plotly)
|
| 132 |
-
if len(
|
| 133 |
drops_fig = create_empty_figure("Significant Probability Drops")
|
| 134 |
else:
|
| 135 |
-
drops = [
|
| 136 |
drops_fig = go.Figure()
|
| 137 |
drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red'))
|
| 138 |
drops_fig.update_layout(
|
|
@@ -143,79 +133,75 @@ def visualize_logprobs(json_input, page_size=100, page=0):
|
|
| 143 |
clickmode='event+select'
|
| 144 |
)
|
| 145 |
drops_fig.update_traces(
|
| 146 |
-
customdata=[f"Drop: {drop:.4f}, From: {
|
| 147 |
hovertemplate='<b>%{customdata}</b><extra></extra>'
|
| 148 |
)
|
| 149 |
|
| 150 |
-
# Create DataFrame for the table
|
| 151 |
table_data = []
|
| 152 |
-
for
|
|
|
|
| 153 |
logprob = ensure_float(entry.get("logprob", None))
|
| 154 |
-
if
|
| 155 |
token = entry["token"]
|
| 156 |
top_logprobs = entry["top_logprobs"]
|
| 157 |
# Ensure all values in top_logprobs are floats
|
| 158 |
-
finite_top_logprobs =
|
| 159 |
for key, value in top_logprobs.items():
|
| 160 |
float_value = ensure_float(value)
|
| 161 |
if float_value is not None and math.isfinite(float_value):
|
| 162 |
-
finite_top_logprobs
|
| 163 |
-
#
|
| 164 |
-
|
| 165 |
row = [token, f"{logprob:.4f}"]
|
| 166 |
-
for alt_token, alt_logprob in
|
| 167 |
row.append(f"{alt_token}: {alt_logprob:.4f}")
|
| 168 |
-
|
|
|
|
| 169 |
row.append("")
|
| 170 |
table_data.append(row)
|
| 171 |
|
| 172 |
df = (
|
| 173 |
pd.DataFrame(
|
| 174 |
table_data,
|
| 175 |
-
columns=[
|
| 176 |
-
"Token",
|
| 177 |
-
"Log Prob",
|
| 178 |
-
"Top 1 Alternative",
|
| 179 |
-
"Top 2 Alternative",
|
| 180 |
-
"Top 3 Alternative",
|
| 181 |
-
],
|
| 182 |
)
|
| 183 |
if table_data
|
| 184 |
else None
|
| 185 |
)
|
| 186 |
|
| 187 |
-
# Generate colored text
|
| 188 |
-
if
|
| 189 |
-
min_logprob = min(
|
| 190 |
-
max_logprob = max(
|
| 191 |
if max_logprob == min_logprob:
|
| 192 |
-
normalized_probs = [0.5] * len(
|
| 193 |
else:
|
| 194 |
normalized_probs = [
|
| 195 |
-
(lp - min_logprob) / (max_logprob - min_logprob) for lp in
|
| 196 |
]
|
| 197 |
|
| 198 |
colored_text = ""
|
| 199 |
-
for i, (token, norm_prob) in enumerate(zip(
|
| 200 |
r = int(255 * (1 - norm_prob)) # Red for low confidence
|
| 201 |
g = int(255 * norm_prob) # Green for high confidence
|
| 202 |
b = 0
|
| 203 |
color = f"rgb({r}, {g}, {b})"
|
| 204 |
colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
|
| 205 |
-
if i < len(
|
| 206 |
colored_text += " "
|
| 207 |
colored_text_html = f"<p>{colored_text}</p>"
|
| 208 |
else:
|
| 209 |
colored_text_html = "No finite log probabilities to display."
|
| 210 |
|
| 211 |
-
# Top
|
| 212 |
-
alt_viz_fig = create_empty_figure("Top
|
| 213 |
-
if
|
| 214 |
-
for i, (token, probs) in enumerate(zip(
|
| 215 |
for j, (alt_tok, prob) in enumerate(probs):
|
| 216 |
-
alt_viz_fig.add_trace(go.Bar(x=[f"{token} (Pos {i
|
| 217 |
alt_viz_fig.update_layout(
|
| 218 |
-
title="Top
|
| 219 |
xaxis_title="Token (Position)",
|
| 220 |
yaxis_title="Log Probability",
|
| 221 |
barmode='stack',
|
|
@@ -223,33 +209,29 @@ def visualize_logprobs(json_input, page_size=100, page=0):
|
|
| 223 |
clickmode='event+select'
|
| 224 |
)
|
| 225 |
alt_viz_fig.update_traces(
|
| 226 |
-
customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}, Position: {i
|
| 227 |
hovertemplate='<b>%{customdata}</b><extra></extra>'
|
| 228 |
)
|
| 229 |
|
| 230 |
-
return (main_fig, df, colored_text_html, alt_viz_fig, drops_fig
|
| 231 |
|
| 232 |
except Exception as e:
|
| 233 |
logger.error("Visualization failed: %s", str(e))
|
| 234 |
-
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top
|
| 235 |
|
| 236 |
-
# Gradio interface with
|
| 237 |
with gr.Blocks(title="Log Probability Visualizer") as app:
|
| 238 |
gr.Markdown("# Log Probability Visualizer")
|
| 239 |
gr.Markdown(
|
| 240 |
-
"Paste your JSON or Python dictionary log prob data below to visualize
|
| 241 |
)
|
| 242 |
|
| 243 |
with gr.Row():
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
)
|
| 250 |
-
with gr.Column(scale=1):
|
| 251 |
-
page = gr.Number(value=0, label="Page Number", precision=0, minimum=0)
|
| 252 |
-
page_size = gr.Number(value=100, label="Page Size", precision=0, minimum=10, maximum=1000, interactive=False) # Fixed at 100, non-interactive
|
| 253 |
|
| 254 |
with gr.Row():
|
| 255 |
plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)")
|
|
@@ -257,7 +239,7 @@ with gr.Blocks(title="Log Probability Visualizer") as app:
|
|
| 257 |
|
| 258 |
with gr.Row():
|
| 259 |
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
|
| 260 |
-
alt_viz_output = gr.Plot(label="Top
|
| 261 |
|
| 262 |
with gr.Row():
|
| 263 |
text_output = gr.HTML(label="Colored Text (Confidence Visualization)")
|
|
@@ -265,46 +247,8 @@ with gr.Blocks(title="Log Probability Visualizer") as app:
|
|
| 265 |
btn = gr.Button("Visualize")
|
| 266 |
btn.click(
|
| 267 |
fn=visualize_logprobs,
|
| 268 |
-
inputs=[json_input
|
| 269 |
-
outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output
|
| 270 |
-
)
|
| 271 |
-
|
| 272 |
-
# Pagination controls
|
| 273 |
-
with gr.Row():
|
| 274 |
-
prev_btn = gr.Button("Previous Page")
|
| 275 |
-
next_btn = gr.Button("Next Page")
|
| 276 |
-
total_pages_output = gr.Number(label="Total Pages", interactive=False)
|
| 277 |
-
current_page_output = gr.Number(label="Current Page", interactive=False)
|
| 278 |
-
|
| 279 |
-
def update_page(json_input, current_page, action):
|
| 280 |
-
try:
|
| 281 |
-
# Safely get total_pages by trying to process the data
|
| 282 |
-
result = visualize_logprobs(json_input, 100, 0) # Use fixed page size and page 0
|
| 283 |
-
if isinstance(result[0], str) or result[0] is None: # Check if it's an error message or empty figure
|
| 284 |
-
total_pages = 1 # Default to 1 page if no data
|
| 285 |
-
else:
|
| 286 |
-
total_pages = result[5] # Extract total_pages from the result (index 5)
|
| 287 |
-
except Exception as e:
|
| 288 |
-
logger.error("Failed to calculate total pages: %s", str(e))
|
| 289 |
-
total_pages = 1 # Default to 1 page on error
|
| 290 |
-
|
| 291 |
-
if action == "prev" and current_page > 0:
|
| 292 |
-
current_page -= 1
|
| 293 |
-
elif action == "next":
|
| 294 |
-
if current_page < total_pages - 1:
|
| 295 |
-
current_page += 1
|
| 296 |
-
return gr.update(value=current_page), gr.update(value=total_pages)
|
| 297 |
-
|
| 298 |
-
prev_btn.click(
|
| 299 |
-
fn=update_page,
|
| 300 |
-
inputs=[json_input, page, gr.State()],
|
| 301 |
-
outputs=[page, total_pages_output]
|
| 302 |
-
)
|
| 303 |
-
|
| 304 |
-
next_btn.click(
|
| 305 |
-
fn=update_page,
|
| 306 |
-
inputs=[json_input, page, gr.State()],
|
| 307 |
-
outputs=[page, total_pages_output]
|
| 308 |
)
|
| 309 |
|
| 310 |
app.launch()
|
|
|
|
| 46 |
# Function to ensure a value is a float, converting from string if necessary
|
| 47 |
def ensure_float(value):
|
| 48 |
if value is None:
|
| 49 |
+
logger.debug("Replacing None logprob with 0.0")
|
| 50 |
+
return 0.0 # Default to 0.0 for None to ensure visualization
|
| 51 |
if isinstance(value, str):
|
| 52 |
try:
|
| 53 |
return float(value)
|
| 54 |
except ValueError:
|
| 55 |
logger.error("Failed to convert string '%s' to float", value)
|
| 56 |
+
return 0.0 # Default to 0.0 for invalid strings
|
| 57 |
if isinstance(value, (int, float)):
|
| 58 |
return float(value)
|
| 59 |
+
return 0.0 # Default for any other type
|
| 60 |
|
| 61 |
# Function to create an empty Plotly figure
|
| 62 |
def create_empty_figure(title):
|
| 63 |
return go.Figure().update_layout(title=title, xaxis_title="", yaxis_title="", showlegend=False)
|
| 64 |
|
| 65 |
+
# Function to process and visualize the full log probs with dynamic top_logprobs
|
| 66 |
+
def visualize_logprobs(json_input):
|
| 67 |
try:
|
| 68 |
# Parse the input (handles both JSON and Python dictionaries)
|
| 69 |
data = parse_input(json_input)
|
|
|
|
| 76 |
else:
|
| 77 |
raise ValueError("Input must be a list or dictionary with 'content' key")
|
| 78 |
|
| 79 |
+
# Extract tokens, log probs, and top alternatives, skipping non-finite values with fixed filter of -100000
|
| 80 |
tokens = []
|
| 81 |
logprobs = []
|
| 82 |
+
top_alternatives = [] # List to store all top_logprobs (dynamic length)
|
| 83 |
for entry in content:
|
| 84 |
logprob = ensure_float(entry.get("logprob", None))
|
| 85 |
+
if math.isfinite(logprob) and logprob >= -100000:
|
| 86 |
tokens.append(entry["token"])
|
| 87 |
logprobs.append(logprob)
|
| 88 |
# Get top_logprobs, default to empty dict if None
|
| 89 |
top_probs = entry.get("top_logprobs", {})
|
| 90 |
+
# Ensure all values in top_logprobs are floats and create a list of tuples
|
| 91 |
+
finite_top_probs = []
|
| 92 |
for key, value in top_probs.items():
|
| 93 |
float_value = ensure_float(value)
|
| 94 |
if float_value is not None and math.isfinite(float_value):
|
| 95 |
+
finite_top_probs.append((key, float_value))
|
| 96 |
+
# Sort by log probability (descending) to get all alternatives
|
| 97 |
+
sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True)
|
| 98 |
+
top_alternatives.append(sorted_probs) # Store all alternatives, dynamic length
|
|
|
|
|
|
|
|
|
|
| 99 |
else:
|
| 100 |
logger.debug("Skipping entry with logprob: %s (type: %s)", entry.get("logprob"), type(entry.get("logprob", None)))
|
| 101 |
|
| 102 |
# Check if there's valid data after filtering
|
| 103 |
if not logprobs or not tokens:
|
| 104 |
+
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
# 1. Main Log Probability Plot (Interactive Plotly)
|
| 107 |
main_fig = go.Figure()
|
| 108 |
+
main_fig.add_trace(go.Scatter(x=list(range(len(logprobs))), y=logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue')))
|
| 109 |
main_fig.update_layout(
|
| 110 |
title="Log Probabilities of Generated Tokens",
|
| 111 |
xaxis_title="Token Position",
|
|
|
|
| 114 |
clickmode='event+select'
|
| 115 |
)
|
| 116 |
main_fig.update_traces(
|
| 117 |
+
customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i}" for i, (tok, prob) in enumerate(zip(tokens, logprobs))],
|
| 118 |
hovertemplate='<b>%{customdata}</b><extra></extra>'
|
| 119 |
)
|
| 120 |
|
| 121 |
# 2. Probability Drop Analysis (Interactive Plotly)
|
| 122 |
+
if len(logprobs) < 2:
|
| 123 |
drops_fig = create_empty_figure("Significant Probability Drops")
|
| 124 |
else:
|
| 125 |
+
drops = [logprobs[i+1] - logprobs[i] for i in range(len(logprobs)-1)]
|
| 126 |
drops_fig = go.Figure()
|
| 127 |
drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red'))
|
| 128 |
drops_fig.update_layout(
|
|
|
|
| 133 |
clickmode='event+select'
|
| 134 |
)
|
| 135 |
drops_fig.update_traces(
|
| 136 |
+
customdata=[f"Drop: {drop:.4f}, From: {tokens[i]} to {tokens[i+1]}, Position: {i}" for i, drop in enumerate(drops)],
|
| 137 |
hovertemplate='<b>%{customdata}</b><extra></extra>'
|
| 138 |
)
|
| 139 |
|
| 140 |
+
# Create DataFrame for the table with dynamic top_logprobs
|
| 141 |
table_data = []
|
| 142 |
+
max_alternatives = max(len(alts) for alts in top_alternatives) if top_alternatives else 0
|
| 143 |
+
for i, entry in enumerate(content):
|
| 144 |
logprob = ensure_float(entry.get("logprob", None))
|
| 145 |
+
if math.isfinite(logprob) and logprob >= -100000 and "top_logprobs" in entry and entry["top_logprobs"] is not None:
|
| 146 |
token = entry["token"]
|
| 147 |
top_logprobs = entry["top_logprobs"]
|
| 148 |
# Ensure all values in top_logprobs are floats
|
| 149 |
+
finite_top_logprobs = []
|
| 150 |
for key, value in top_logprobs.items():
|
| 151 |
float_value = ensure_float(value)
|
| 152 |
if float_value is not None and math.isfinite(float_value):
|
| 153 |
+
finite_top_logprobs.append((key, float_value))
|
| 154 |
+
# Sort by log probability (descending)
|
| 155 |
+
sorted_probs = sorted(finite_top_logprobs, key=lambda x: x[1], reverse=True)
|
| 156 |
row = [token, f"{logprob:.4f}"]
|
| 157 |
+
for alt_token, alt_logprob in sorted_probs[:max_alternatives]: # Use max number of alternatives
|
| 158 |
row.append(f"{alt_token}: {alt_logprob:.4f}")
|
| 159 |
+
# Pad with empty strings if fewer alternatives than max
|
| 160 |
+
while len(row) < 2 + max_alternatives:
|
| 161 |
row.append("")
|
| 162 |
table_data.append(row)
|
| 163 |
|
| 164 |
df = (
|
| 165 |
pd.DataFrame(
|
| 166 |
table_data,
|
| 167 |
+
columns=["Token", "Log Prob"] + [f"Alt {i+1}" for i in range(max_alternatives)],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
)
|
| 169 |
if table_data
|
| 170 |
else None
|
| 171 |
)
|
| 172 |
|
| 173 |
+
# Generate colored text
|
| 174 |
+
if logprobs:
|
| 175 |
+
min_logprob = min(logprobs)
|
| 176 |
+
max_logprob = max(logprobs)
|
| 177 |
if max_logprob == min_logprob:
|
| 178 |
+
normalized_probs = [0.5] * len(logprobs)
|
| 179 |
else:
|
| 180 |
normalized_probs = [
|
| 181 |
+
(lp - min_logprob) / (max_logprob - min_logprob) for lp in logprobs
|
| 182 |
]
|
| 183 |
|
| 184 |
colored_text = ""
|
| 185 |
+
for i, (token, norm_prob) in enumerate(zip(tokens, normalized_probs)):
|
| 186 |
r = int(255 * (1 - norm_prob)) # Red for low confidence
|
| 187 |
g = int(255 * norm_prob) # Green for high confidence
|
| 188 |
b = 0
|
| 189 |
color = f"rgb({r}, {g}, {b})"
|
| 190 |
colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
|
| 191 |
+
if i < len(tokens) - 1:
|
| 192 |
colored_text += " "
|
| 193 |
colored_text_html = f"<p>{colored_text}</p>"
|
| 194 |
else:
|
| 195 |
colored_text_html = "No finite log probabilities to display."
|
| 196 |
|
| 197 |
+
# Top Token Log Probabilities (Interactive Plotly, dynamic length)
|
| 198 |
+
alt_viz_fig = create_empty_figure("Top Token Log Probabilities") if not logprobs or not top_alternatives else go.Figure()
|
| 199 |
+
if logprobs and top_alternatives:
|
| 200 |
+
for i, (token, probs) in enumerate(zip(tokens, top_alternatives)):
|
| 201 |
for j, (alt_tok, prob) in enumerate(probs):
|
| 202 |
+
alt_viz_fig.add_trace(go.Bar(x=[f"{token} (Pos {i})"], y=[prob], name=f"{alt_tok}", marker_color=['blue', 'green', 'red', 'purple', 'orange'][:len(probs)]))
|
| 203 |
alt_viz_fig.update_layout(
|
| 204 |
+
title="Top Token Log Probabilities",
|
| 205 |
xaxis_title="Token (Position)",
|
| 206 |
yaxis_title="Log Probability",
|
| 207 |
barmode='stack',
|
|
|
|
| 209 |
clickmode='event+select'
|
| 210 |
)
|
| 211 |
alt_viz_fig.update_traces(
|
| 212 |
+
customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}, Position: {i}" for i, (tok, alts) in enumerate(zip(tokens, top_alternatives)) for alt, prob in alts],
|
| 213 |
hovertemplate='<b>%{customdata}</b><extra></extra>'
|
| 214 |
)
|
| 215 |
|
| 216 |
+
return (main_fig, df, colored_text_html, alt_viz_fig, drops_fig)
|
| 217 |
|
| 218 |
except Exception as e:
|
| 219 |
logger.error("Visualization failed: %s", str(e))
|
| 220 |
+
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"))
|
| 221 |
|
| 222 |
+
# Gradio interface with full dataset visualization and dynamic top_logprobs
|
| 223 |
with gr.Blocks(title="Log Probability Visualizer") as app:
|
| 224 |
gr.Markdown("# Log Probability Visualizer")
|
| 225 |
gr.Markdown(
|
| 226 |
+
"Paste your JSON or Python dictionary log prob data below to visualize all tokens at once. Fixed filter ≥ -100000, dynamic number of top_logprobs."
|
| 227 |
)
|
| 228 |
|
| 229 |
with gr.Row():
|
| 230 |
+
json_input = gr.Textbox(
|
| 231 |
+
label="JSON Input",
|
| 232 |
+
lines=10,
|
| 233 |
+
placeholder="Paste your JSON (e.g., {\"content\": [...]}) or Python dict (e.g., {'content': [...]}) here...",
|
| 234 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
with gr.Row():
|
| 237 |
plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)")
|
|
|
|
| 239 |
|
| 240 |
with gr.Row():
|
| 241 |
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
|
| 242 |
+
alt_viz_output = gr.Plot(label="Top Token Log Probabilities (Click for Details)")
|
| 243 |
|
| 244 |
with gr.Row():
|
| 245 |
text_output = gr.HTML(label="Colored Text (Confidence Visualization)")
|
|
|
|
| 247 |
btn = gr.Button("Visualize")
|
| 248 |
btn.click(
|
| 249 |
fn=visualize_logprobs,
|
| 250 |
+
inputs=[json_input],
|
| 251 |
+
outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
)
|
| 253 |
|
| 254 |
app.launch()
|