Spaces:
Running
Running
update
Browse files
app.py
CHANGED
|
@@ -74,53 +74,62 @@ def synthesize_speech(request: TTSRequest):
|
|
| 74 |
detail="Models are not loaded yet. Please try again in a moment."
|
| 75 |
)
|
| 76 |
|
| 77 |
-
#
|
| 78 |
if request.language not in ['en', 'bikol']:
|
| 79 |
-
raise HTTPException(
|
| 80 |
-
status_code=status.HTTP_400_BAD_REQUEST,
|
| 81 |
-
detail="Invalid language specified. Use 'en' or 'bikol'."
|
| 82 |
-
)
|
| 83 |
-
|
| 84 |
-
# Check if requested model is available
|
| 85 |
if request.language not in models:
|
| 86 |
available = [k for k in models.keys() if k != 'hifigan']
|
| 87 |
-
raise HTTPException(
|
| 88 |
-
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
|
| 89 |
-
detail=f"The '{request.language}' model is not available. Available languages: {', '.join(available)}"
|
| 90 |
-
)
|
| 91 |
|
| 92 |
try:
|
| 93 |
-
# Select the correct FastPitch model
|
| 94 |
spectrogram_generator = models[request.language]
|
| 95 |
vocoder = models['hifigan']
|
| 96 |
|
| 97 |
-
logger.info(f"
|
| 98 |
|
| 99 |
-
|
| 100 |
with torch.no_grad():
|
| 101 |
-
#
|
| 102 |
parsed = spectrogram_generator.parse(request.text)
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
| 105 |
spectrogram = spectrogram_generator.generate_spectrogram(tokens=parsed)
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
# --- Prepare and return audio file ---
|
| 112 |
audio_numpy = audio.to('cpu').detach().numpy()
|
| 113 |
|
| 114 |
-
|
|
|
|
| 115 |
if len(audio_numpy.shape) > 1:
|
| 116 |
audio_numpy = audio_numpy.squeeze()
|
| 117 |
|
| 118 |
-
# Use an in-memory buffer to avoid writing to disk
|
| 119 |
buffer = io.BytesIO()
|
| 120 |
sf.write(buffer, audio_numpy, samplerate=22050, format='WAV')
|
| 121 |
buffer.seek(0)
|
| 122 |
|
| 123 |
-
|
|
|
|
| 124 |
from fastapi.responses import StreamingResponse
|
| 125 |
return StreamingResponse(buffer, media_type="audio/wav")
|
| 126 |
|
|
@@ -128,10 +137,7 @@ def synthesize_speech(request: TTSRequest):
|
|
| 128 |
logger.error(f"Error during synthesis: {e}")
|
| 129 |
import traceback
|
| 130 |
traceback.print_exc()
|
| 131 |
-
raise HTTPException(
|
| 132 |
-
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
| 133 |
-
detail=f"An error occurred during audio synthesis: {str(e)}"
|
| 134 |
-
)
|
| 135 |
|
| 136 |
# --- 5. Add a Root Endpoint for Health Check ---
|
| 137 |
@app.get("/")
|
|
|
|
| 74 |
detail="Models are not loaded yet. Please try again in a moment."
|
| 75 |
)
|
| 76 |
|
| 77 |
+
# ... (the validation code remains the same) ...
|
| 78 |
if request.language not in ['en', 'bikol']:
|
| 79 |
+
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid language specified. Use 'en' or 'bikol'.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
if request.language not in models:
|
| 81 |
available = [k for k in models.keys() if k != 'hifigan']
|
| 82 |
+
raise HTTPException(status_code=status.HTTP_503_SERVICE_UNAVAILABLE, detail=f"The '{request.language}' model is not available. Available languages: {', '.join(available)}")
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
try:
|
|
|
|
| 85 |
spectrogram_generator = models[request.language]
|
| 86 |
vocoder = models['hifigan']
|
| 87 |
|
| 88 |
+
logger.info(f"--- STARTING SYNTHESIS FOR '{request.text}' ---")
|
| 89 |
|
| 90 |
+
audio = None # Define audio here to ensure it exists
|
| 91 |
with torch.no_grad():
|
| 92 |
+
# --- DEBUG STEP 1: Check the parsed tokens ---
|
| 93 |
parsed = spectrogram_generator.parse(request.text)
|
| 94 |
+
logger.info(f"1. Parsed tokens shape: {parsed.shape}")
|
| 95 |
+
logger.info(f" Parsed tokens content: {parsed}")
|
| 96 |
+
|
| 97 |
+
# --- DEBUG STEP 2: Check the generated spectrogram ---
|
| 98 |
spectrogram = spectrogram_generator.generate_spectrogram(tokens=parsed)
|
| 99 |
+
if spectrogram is not None:
|
| 100 |
+
logger.info(f"2. Spectrogram generated with shape: {spectrogram.shape}")
|
| 101 |
+
logger.info(f" Spectrogram stats: min={spectrogram.min()}, max={spectrogram.max()}, mean={spectrogram.mean()}")
|
| 102 |
+
else:
|
| 103 |
+
logger.error("2. FAILED: Spectrogram is None!")
|
| 104 |
+
|
| 105 |
+
# --- DEBUG STEP 3: Check the generated audio waveform ---
|
| 106 |
+
if spectrogram is not None:
|
| 107 |
+
audio = vocoder.convert_spectrogram_to_audio(spec=spectrogram)
|
| 108 |
+
if audio is not None:
|
| 109 |
+
logger.info(f"3. Audio generated with shape: {audio.shape}")
|
| 110 |
+
logger.info(f" Audio stats: min={audio.min()}, max={audio.max()}, mean={audio.mean()}")
|
| 111 |
+
else:
|
| 112 |
+
logger.error("3. FAILED: Audio is None!")
|
| 113 |
+
|
| 114 |
+
# If audio generation failed, we can't proceed
|
| 115 |
+
if audio is None:
|
| 116 |
+
logger.error("Synthesis failed, audio tensor is None.")
|
| 117 |
+
raise HTTPException(status_code=500, detail="Audio generation failed internally, resulting in None.")
|
| 118 |
+
|
| 119 |
# --- Prepare and return audio file ---
|
| 120 |
audio_numpy = audio.to('cpu').detach().numpy()
|
| 121 |
|
| 122 |
+
logger.info(f"4. Successfully converted to NumPy array.")
|
| 123 |
+
|
| 124 |
if len(audio_numpy.shape) > 1:
|
| 125 |
audio_numpy = audio_numpy.squeeze()
|
| 126 |
|
|
|
|
| 127 |
buffer = io.BytesIO()
|
| 128 |
sf.write(buffer, audio_numpy, samplerate=22050, format='WAV')
|
| 129 |
buffer.seek(0)
|
| 130 |
|
| 131 |
+
logger.info(f"--- SYNTHESIS COMPLETE ---")
|
| 132 |
+
|
| 133 |
from fastapi.responses import StreamingResponse
|
| 134 |
return StreamingResponse(buffer, media_type="audio/wav")
|
| 135 |
|
|
|
|
| 137 |
logger.error(f"Error during synthesis: {e}")
|
| 138 |
import traceback
|
| 139 |
traceback.print_exc()
|
| 140 |
+
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"An error occurred during audio synthesis: {str(e)}")
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
# --- 5. Add a Root Endpoint for Health Check ---
|
| 143 |
@app.get("/")
|