Spaces:
Sleeping
Sleeping
test file_research
Browse files- app.py +109 -0
- requirements.txt +7 -0
app.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
import time
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
from getpass import getpass
|
| 6 |
+
from langchain.llms import replicate
|
| 7 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
| 8 |
+
from langchain.prompts import PromptTemplate
|
| 9 |
+
|
| 10 |
+
from PyPDF2 import PdfReader
|
| 11 |
+
from streamlit_extras.add_vertical_space import add_vertical_space
|
| 12 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 13 |
+
#from langchain.embeddings.openai import OpenAIEmbeddings
|
| 14 |
+
from langchain.vectorstores import faiss
|
| 15 |
+
|
| 16 |
+
load_dotenv()
|
| 17 |
+
REPLICATE_API_TOKEN = os.environ.get("REPLICATE_API_TOKEN")
|
| 18 |
+
|
| 19 |
+
with st.sidebar:
|
| 20 |
+
st.title("File Research using LLM")
|
| 21 |
+
st.markdown(''' Upload your file and ask questions and do Research''')
|
| 22 |
+
add_vertical_space(5)
|
| 23 |
+
pdf=st.file_uploader('Upload your file (PDF)', type='pdf')
|
| 24 |
+
if pdf is not None:
|
| 25 |
+
pdf_reader=PdfReader(pdf)
|
| 26 |
+
text=""
|
| 27 |
+
for page in pdf_reader.pages:
|
| 28 |
+
text+=page.extract_text()
|
| 29 |
+
text_splitter=RecursiveCharacterTextSplitter(
|
| 30 |
+
chunk_size=1000,
|
| 31 |
+
chunk_overlap=200,
|
| 32 |
+
length_function=len
|
| 33 |
+
)
|
| 34 |
+
chunks=text_splitter.split_text(text)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
st.write('Made by ALOK')
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def main():
|
| 43 |
+
st.header('Talk to your file')
|
| 44 |
+
os.environ["REPLICATE_API_TOKEN"]=REPLICATE_API_TOKEN
|
| 45 |
+
#embeddings=OpenAIEmbeddings()
|
| 46 |
+
#vectorstore=faiss.FAISS.from_texts(chunks, embedding=embeddings)
|
| 47 |
+
|
| 48 |
+
# The meta/llama-2-70b-chat model can stream output as it's running.
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
if "messages" not in st.session_state:
|
| 52 |
+
st.session_state.messages = []
|
| 53 |
+
|
| 54 |
+
# Display chat messages from history on app rerun
|
| 55 |
+
for message in st.session_state.messages:
|
| 56 |
+
with st.chat_message(message["role"]):
|
| 57 |
+
st.markdown(message["content"])
|
| 58 |
+
|
| 59 |
+
# React to user input
|
| 60 |
+
if prompt := st.chat_input("Type Here"):
|
| 61 |
+
# Display user message in chat message container
|
| 62 |
+
st.chat_message("user").markdown(prompt)
|
| 63 |
+
# Add user message to chat history
|
| 64 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 65 |
+
replite_api='r8_4fktoXrDGkgHY8uw1XlVtQJKQlAILKv0iBmPI'
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
# rep = replicate.Client(api_token=replite_api)
|
| 69 |
+
# output = replicate.run(
|
| 70 |
+
# "meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3",
|
| 71 |
+
# input={"prompt": prompt}
|
| 72 |
+
# )
|
| 73 |
+
|
| 74 |
+
model="meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3"
|
| 75 |
+
llm=replicate.Replicate(
|
| 76 |
+
streaming=True,
|
| 77 |
+
callbacks=[StreamingStdOutCallbackHandler()],
|
| 78 |
+
model=model,
|
| 79 |
+
model_kwargs={"temperature": 0.75, "max_length": 500, "top_p": 1},
|
| 80 |
+
replicate_api_token=REPLICATE_API_TOKEN
|
| 81 |
+
)
|
| 82 |
+
prompt = """
|
| 83 |
+
User: Answer the following yes/no question by reasoning step by step. Please don't provide incomplete answer. Can a dog drive a car?
|
| 84 |
+
Assistant:
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# Display assistant response in chat message container
|
| 89 |
+
with st.chat_message("assistant"):
|
| 90 |
+
message_placeholder = st.empty()
|
| 91 |
+
message_placeholder.markdown(llm(prompt) + "▌")
|
| 92 |
+
|
| 93 |
+
# # The predict method returns an iterator, and you can iterate over that output.
|
| 94 |
+
# response_till_now=''
|
| 95 |
+
# for item in output:
|
| 96 |
+
# response_till_now+=item
|
| 97 |
+
# time.sleep(0.03)
|
| 98 |
+
# message_placeholder.markdown(response_till_now + "▌")
|
| 99 |
+
# message_placeholder.markdown(response_till_now)
|
| 100 |
+
# response = f"AI: {response_till_now}"
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
# Add assistant response to chat history
|
| 104 |
+
# st.session_state.messages.append({"role": "assistant", "content": response})
|
| 105 |
+
# https://replicate.com/meta/llama-2-70b-chat/versions/02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3/api#output-schema
|
| 106 |
+
#print(item, end="")
|
| 107 |
+
|
| 108 |
+
if __name__=='__main__':
|
| 109 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langchain
|
| 2 |
+
PyPDF2
|
| 3 |
+
streamlit
|
| 4 |
+
replicate
|
| 5 |
+
python-dotenv
|
| 6 |
+
faiss-cpu
|
| 7 |
+
streamlit-extras
|