Upload 50 files
Browse files- .gitattributes +5 -0
- .python-version +1 -1
- apps/gradio_app.py +131 -138
- apps/gradio_app/assets/examples/license_plate_detector_ocr/1/lp_image.jpg +0 -0
- apps/gradio_app/assets/examples/license_plate_detector_ocr/1/lp_image_output.jpg +0 -0
- apps/gradio_app/assets/examples/license_plate_detector_ocr/2/lp_video.mp4 +3 -0
- apps/gradio_app/assets/examples/license_plate_detector_ocr/2/lp_video_output.mp4 +3 -0
- apps/gradio_app/processor.py +131 -32
- apps/old3-gradio_app.py +68 -0
- assets/examples/license_plate_detector_ocr/1/lp_image.jpg +0 -0
- assets/examples/license_plate_detector_ocr/1/lp_image_output.jpg +0 -0
- assets/examples/license_plate_detector_ocr/2/lp_video.mp4 +3 -0
- assets/examples/license_plate_detector_ocr/2/lp_video_output.mp4 +3 -0
- assets/gradio_app_demo.jpg +3 -0
- requirements/requirements.txt +7 -6
- requirements/requirements_compatible.txt +1 -0
- src/license_plate_detector_ocr/infer.py +29 -143
- src/license_plate_detector_ocr/inference/image_video_processor.py +134 -0
- src/license_plate_detector_ocr/inference/yolo_infer.py +26 -0
- src/license_plate_detector_ocr/old2-infer.py +173 -0
- src/license_plate_detector_ocr/old3-infer.py +56 -0
.gitattributes
CHANGED
|
@@ -37,3 +37,8 @@ assets/lp_video[[:space:]]-[[:space:]]Trim.mp4 filter=lfs diff=lfs merge=lfs -te
|
|
| 37 |
assets/lp_video.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 38 |
apps/assets/examples/license_plate_detector_ocr/2/lp_video_output.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 39 |
apps/assets/examples/license_plate_detector_ocr/2/lp_video.mp4 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
assets/lp_video.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 38 |
apps/assets/examples/license_plate_detector_ocr/2/lp_video_output.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 39 |
apps/assets/examples/license_plate_detector_ocr/2/lp_video.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
apps/gradio_app/assets/examples/license_plate_detector_ocr/2/lp_video_output.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
apps/gradio_app/assets/examples/license_plate_detector_ocr/2/lp_video.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
assets/examples/license_plate_detector_ocr/2/lp_video_output.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
assets/examples/license_plate_detector_ocr/2/lp_video.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
assets/gradio_app_demo.jpg filter=lfs diff=lfs merge=lfs -text
|
.python-version
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
|
|
|
|
| 1 |
+
3.11.13
|
apps/gradio_app.py
CHANGED
|
@@ -1,138 +1,131 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import os
|
| 3 |
-
import
|
| 4 |
-
from gradio_app.
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
.
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
.
|
| 22 |
-
.
|
| 23 |
-
"""
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
#
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
#
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
with gr.Blocks(
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
fn=
|
| 106 |
-
inputs=
|
| 107 |
-
outputs=
|
| 108 |
-
)
|
| 109 |
-
|
| 110 |
-
#
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
clear_button.click(
|
| 133 |
-
fn=lambda: (None, None, None, "Image", None, None, None, None),
|
| 134 |
-
outputs=[input_file, output_image, output_video, input_type, input_preview_image, input_preview_video, output_image, output_video]
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
-
if __name__ == "__main__":
|
| 138 |
-
iface.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
from gradio_app.config import setup_logging, setup_sys_path
|
| 4 |
+
from gradio_app.processor import gradio_process, update_preview, update_visibility, clear_preview_data
|
| 5 |
+
|
| 6 |
+
# Initialize logging and sys.path
|
| 7 |
+
setup_logging()
|
| 8 |
+
setup_sys_path()
|
| 9 |
+
|
| 10 |
+
# Load custom CSS
|
| 11 |
+
custom_css = open(os.path.join(os.path.dirname(__file__), "gradio_app", "static", "styles.css"), "r").read()
|
| 12 |
+
|
| 13 |
+
# Define example files
|
| 14 |
+
examples = [
|
| 15 |
+
{
|
| 16 |
+
"input_file": os.path.join(os.path.dirname(__file__), "gradio_app", "assets", "examples", "license_plate_detector_ocr", "1", "lp_image.jpg"),
|
| 17 |
+
"output_file": os.path.join(os.path.dirname(__file__), "gradio_app", "assets", "examples", "license_plate_detector_ocr", "1", "lp_image_output.jpg"),
|
| 18 |
+
"input_type": "Image"
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"input_file": os.path.join(os.path.dirname(__file__), "gradio_app", "assets", "examples", "license_plate_detector_ocr", "2", "lp_video.mp4"),
|
| 22 |
+
"output_file": os.path.join(os.path.dirname(__file__), "gradio_app", "assets", "examples", "license_plate_detector_ocr", "2", "lp_video_output.mp4"),
|
| 23 |
+
"input_type": "Video"
|
| 24 |
+
}
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
+
# Function to handle example selection
|
| 28 |
+
def load_example(evt: gr.SelectData):
|
| 29 |
+
index = evt.index[0] if evt.index else 0
|
| 30 |
+
example = examples[index]
|
| 31 |
+
input_file = example["input_file"]
|
| 32 |
+
output_file = example["output_file"]
|
| 33 |
+
input_type = example["input_type"]
|
| 34 |
+
|
| 35 |
+
# Update visibility based on input type
|
| 36 |
+
input_preview_image, input_preview_video, output_image, output_video = update_visibility(input_type)
|
| 37 |
+
|
| 38 |
+
# Update preview based on input file and type
|
| 39 |
+
input_preview_image, input_preview_video = update_preview(input_file, input_type)
|
| 40 |
+
|
| 41 |
+
return (
|
| 42 |
+
input_file,
|
| 43 |
+
input_type,
|
| 44 |
+
input_preview_image,
|
| 45 |
+
input_preview_video,
|
| 46 |
+
output_file if input_type == "Image" else None,
|
| 47 |
+
output_file if input_type == "Video" else None,
|
| 48 |
+
"Example loaded - click Submit to process"
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
# Gradio Interface
|
| 52 |
+
with gr.Blocks(css=custom_css) as iface:
|
| 53 |
+
gr.Markdown(
|
| 54 |
+
"""
|
| 55 |
+
# License Plate Detection and OCR
|
| 56 |
+
Detect license plates from images or videos and read their text using
|
| 57 |
+
advanced computer vision and OCR for accurate identification.
|
| 58 |
+
""",
|
| 59 |
+
elem_classes="markdown-title"
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
with gr.Row():
|
| 64 |
+
with gr.Column(scale=1):
|
| 65 |
+
input_file = gr.File(label="Upload Image or Video", elem_classes="custom-file-input")
|
| 66 |
+
input_type = gr.Radio(choices=["Image", "Video"], label="Input Type", value="Image", elem_classes="custom-radio")
|
| 67 |
+
with gr.Blocks():
|
| 68 |
+
input_preview_image = gr.Image(label="Input Preview", visible=True, elem_classes="custom-image")
|
| 69 |
+
input_preview_video = gr.Video(label="Input Preview", visible=False, elem_classes="custom-video")
|
| 70 |
+
with gr.Row():
|
| 71 |
+
clear_button = gr.Button("Clear", variant="secondary", elem_classes="custom-button secondary")
|
| 72 |
+
submit_button = gr.Button("Submit", variant="primary", elem_classes="custom-button primary")
|
| 73 |
+
with gr.Column(scale=1):
|
| 74 |
+
with gr.Blocks():
|
| 75 |
+
output_image = gr.Image(label="Processed Output (Image)", type="numpy", visible=True, elem_classes="custom-image")
|
| 76 |
+
output_video = gr.Video(label="Processed Output (Video)", visible=False, elem_classes="custom-video")
|
| 77 |
+
output_text = gr.Textbox(label="Detected License Plates", lines=10, elem_classes="custom-textbox")
|
| 78 |
+
|
| 79 |
+
# Update preview and output visibility when input type changes
|
| 80 |
+
input_type.change(
|
| 81 |
+
fn=update_visibility,
|
| 82 |
+
inputs=input_type,
|
| 83 |
+
outputs=[input_preview_image, input_preview_video, output_image, output_video]
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# Update preview when file is uploaded
|
| 87 |
+
input_file.change(
|
| 88 |
+
fn=update_preview,
|
| 89 |
+
inputs=[input_file, input_type],
|
| 90 |
+
outputs=[input_preview_image, input_preview_video]
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# Bind the processing function
|
| 94 |
+
submit_button.click(
|
| 95 |
+
fn=gradio_process,
|
| 96 |
+
inputs=[input_file, input_type],
|
| 97 |
+
outputs=[output_image, output_video, output_text, input_preview_image, input_preview_video]
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# Clear button functionality
|
| 101 |
+
clear_button.click(
|
| 102 |
+
fn=lambda: (None, None, None, "Image", None, None, None, None),
|
| 103 |
+
outputs=[input_file, output_image, output_video, input_type, input_preview_image, input_preview_video, output_image, output_video]
|
| 104 |
+
).then(
|
| 105 |
+
fn=clear_preview_data,
|
| 106 |
+
inputs=None,
|
| 107 |
+
outputs=None
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# Examples table
|
| 111 |
+
with gr.Row():
|
| 112 |
+
gr.Markdown("### Examples")
|
| 113 |
+
|
| 114 |
+
with gr.Row():
|
| 115 |
+
example_table = gr.Dataframe(
|
| 116 |
+
value=[[i, ex["input_type"], os.path.basename(ex["input_file"])] for i, ex in enumerate(examples)],
|
| 117 |
+
headers=["Index", "Type", "File"],
|
| 118 |
+
datatype=["number", "str", "str"],
|
| 119 |
+
interactive=True,
|
| 120 |
+
elem_classes="custom-table"
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
# Example table click handler
|
| 124 |
+
example_table.select(
|
| 125 |
+
fn=load_example,
|
| 126 |
+
inputs=None,
|
| 127 |
+
outputs=[input_file, input_type, input_preview_image, input_preview_video, output_image, output_video, output_text]
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
if __name__ == "__main__":
|
| 131 |
+
iface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
apps/gradio_app/assets/examples/license_plate_detector_ocr/1/lp_image.jpg
ADDED
|
apps/gradio_app/assets/examples/license_plate_detector_ocr/1/lp_image_output.jpg
ADDED
|
apps/gradio_app/assets/examples/license_plate_detector_ocr/2/lp_video.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:72dececeb4cc1ce1da5264211578c9331a3fb31d36bf21ac2f40471d70e2121d
|
| 3 |
+
size 4984385
|
apps/gradio_app/assets/examples/license_plate_detector_ocr/2/lp_video_output.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:72dececeb4cc1ce1da5264211578c9331a3fb31d36bf21ac2f40471d70e2121d
|
| 3 |
+
size 4984385
|
apps/gradio_app/processor.py
CHANGED
|
@@ -4,7 +4,9 @@ import shutil
|
|
| 4 |
import traceback
|
| 5 |
import logging
|
| 6 |
import gradio as gr
|
| 7 |
-
import uuid
|
|
|
|
|
|
|
| 8 |
from gradio_app.utils import convert_to_supported_format
|
| 9 |
|
| 10 |
# Adjust sys.path to include the src directory
|
|
@@ -13,60 +15,125 @@ from infer import infer, is_image_file
|
|
| 13 |
|
| 14 |
def gradio_process(input_file, input_type):
|
| 15 |
"""Process the input file (image or video) for license plate detection and OCR."""
|
|
|
|
|
|
|
|
|
|
| 16 |
try:
|
| 17 |
-
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
# Verify input file exists
|
| 28 |
-
if not os.path.exists(temp_input_path):
|
| 29 |
-
error_msg = f"Error: Input file {temp_input_path} does not exist."
|
| 30 |
logging.error(error_msg)
|
| 31 |
return None, None, error_msg, None, None
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
os.makedirs(output_dir, exist_ok=True)
|
| 36 |
-
# Modified line with UUID
|
| 37 |
-
unique_id = str(uuid.uuid4())[:8] # Use first 8 characters of UUID for brevity
|
| 38 |
output_filename = f"{os.path.splitext(os.path.basename(temp_input_path))[0]}_{unique_id}_output{'_output.jpg' if is_image_file(temp_input_path) else '_output.mp4'}"
|
| 39 |
output_path = os.path.join(output_dir, output_filename)
|
| 40 |
logging.debug(f"Output path: {output_path}")
|
| 41 |
|
| 42 |
# Call the infer function
|
|
|
|
| 43 |
result_array, plate_texts = infer(temp_input_path, output_path)
|
| 44 |
|
| 45 |
if result_array is None and is_image_file(temp_input_path):
|
| 46 |
-
error_msg = f"Error: Processing failed for {temp_input_path}. 'infer' returned None."
|
| 47 |
logging.error(error_msg)
|
| 48 |
-
return None, None, error_msg, None, None
|
| 49 |
|
| 50 |
# Validate output file for videos
|
| 51 |
if not is_image_file(temp_input_path):
|
| 52 |
if not os.path.exists(output_path):
|
| 53 |
error_msg = f"Error: Output video file {output_path} was not created."
|
| 54 |
logging.error(error_msg)
|
| 55 |
-
return None, None, error_msg, None,
|
| 56 |
# Convert output video to supported format
|
| 57 |
converted_output_path = os.path.join(output_dir, f"converted_{os.path.basename(output_path)}")
|
| 58 |
converted_path = convert_to_supported_format(output_path, converted_output_path)
|
| 59 |
if converted_path is None:
|
| 60 |
error_msg = f"Error: Failed to convert output video {output_path} to supported format."
|
| 61 |
logging.error(error_msg)
|
| 62 |
-
return None, None, error_msg, None,
|
| 63 |
output_path = converted_path
|
| 64 |
|
| 65 |
# Format plate texts
|
| 66 |
if is_image_file(temp_input_path):
|
| 67 |
formatted_texts = "\n".join(plate_texts) if plate_texts else "No plates detected"
|
| 68 |
logging.debug(f"Image processed successfully. Plate texts: {formatted_texts}")
|
| 69 |
-
return result_array, None, formatted_texts,
|
| 70 |
else:
|
| 71 |
formatted_texts = []
|
| 72 |
for i, texts in enumerate(plate_texts):
|
|
@@ -74,28 +141,52 @@ def gradio_process(input_file, input_type):
|
|
| 74 |
formatted_texts.append(f"Frame {i+1}: {', '.join(texts)}")
|
| 75 |
formatted_texts = "\n".join(formatted_texts) if formatted_texts else "No plates detected"
|
| 76 |
logging.debug(f"Video processed successfully. Plate texts: {formatted_texts}")
|
| 77 |
-
return None, output_path, formatted_texts, None,
|
| 78 |
except Exception as e:
|
| 79 |
-
error_message = f"Error processing {
|
| 80 |
logging.error(error_message)
|
| 81 |
print(error_message)
|
| 82 |
-
return None, None, error_message, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
def update_preview(file, input_type):
|
| 85 |
"""Return file path for the appropriate preview component based on input type."""
|
| 86 |
if not file:
|
| 87 |
logging.debug("No file provided for preview.")
|
| 88 |
return None, None
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
# Verify file exists
|
| 91 |
-
if not os.path.exists(
|
| 92 |
-
logging.error(f"Input file {
|
| 93 |
return None, None
|
|
|
|
| 94 |
# Check if video format is supported
|
| 95 |
-
if input_type == "Video" and not
|
| 96 |
-
logging.error(f"Unsupported video format for {
|
| 97 |
return None, None
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
def update_visibility(input_type):
|
| 101 |
"""Update visibility of input/output components based on input type."""
|
|
@@ -107,4 +198,12 @@ def update_visibility(input_type):
|
|
| 107 |
gr.update(visible=is_video),
|
| 108 |
gr.update(visible=is_image),
|
| 109 |
gr.update(visible=is_video)
|
| 110 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import traceback
|
| 5 |
import logging
|
| 6 |
import gradio as gr
|
| 7 |
+
import uuid
|
| 8 |
+
import cv2
|
| 9 |
+
import time
|
| 10 |
from gradio_app.utils import convert_to_supported_format
|
| 11 |
|
| 12 |
# Adjust sys.path to include the src directory
|
|
|
|
| 15 |
|
| 16 |
def gradio_process(input_file, input_type):
|
| 17 |
"""Process the input file (image or video) for license plate detection and OCR."""
|
| 18 |
+
unique_id = str(uuid.uuid4())[:8]
|
| 19 |
+
temp_input_dir = os.path.abspath(os.path.join("apps/gradio_app/temp_data", unique_id))
|
| 20 |
+
preview_dir = os.path.abspath(os.path.join("apps/gradio_app/preview_data", unique_id))
|
| 21 |
try:
|
| 22 |
+
file_path = input_file.name if hasattr(input_file, 'name') else input_file
|
| 23 |
+
logging.debug(f"Input file path: {file_path}")
|
| 24 |
+
print(f"Input file path: {file_path}")
|
| 25 |
|
| 26 |
+
# Verify source file exists and is readable
|
| 27 |
+
if not os.path.exists(file_path):
|
| 28 |
+
error_msg = f"Error: Source file {file_path} does not exist."
|
| 29 |
+
logging.error(error_msg)
|
| 30 |
+
return None, None, error_msg, None, None
|
| 31 |
+
if not os.access(file_path, os.R_OK):
|
| 32 |
+
error_msg = f"Error: Source file {file_path} is not readable."
|
|
|
|
|
|
|
|
|
|
| 33 |
logging.error(error_msg)
|
| 34 |
return None, None, error_msg, None, None
|
| 35 |
|
| 36 |
+
# Create unique temp and preview directories
|
| 37 |
+
os.makedirs(temp_input_dir, exist_ok=True)
|
| 38 |
+
os.makedirs(preview_dir, exist_ok=True)
|
| 39 |
+
temp_input_path = os.path.join(temp_input_dir, os.path.basename(file_path))
|
| 40 |
+
preview_input_path = os.path.join(preview_dir, os.path.basename(file_path))
|
| 41 |
+
|
| 42 |
+
# Copy input file to temp and preview directories with retry
|
| 43 |
+
max_retries = 3
|
| 44 |
+
for attempt in range(max_retries):
|
| 45 |
+
try:
|
| 46 |
+
shutil.copy2(file_path, temp_input_path) # Copy to temp for processing
|
| 47 |
+
shutil.copy2(file_path, preview_input_path) # Copy to preview for display
|
| 48 |
+
os.chmod(temp_input_path, 0o644)
|
| 49 |
+
os.chmod(preview_input_path, 0o644)
|
| 50 |
+
logging.debug(f"Copied input file to: {temp_input_path} and {preview_input_path}")
|
| 51 |
+
break
|
| 52 |
+
except Exception as e:
|
| 53 |
+
if attempt == max_retries - 1:
|
| 54 |
+
error_msg = f"Error copying file {file_path} to {temp_input_path} or {preview_input_path} after {max_retries} attempts: {str(e)}"
|
| 55 |
+
logging.error(error_msg)
|
| 56 |
+
return None, None, error_msg, None, None
|
| 57 |
+
time.sleep(0.5) # Brief delay before retry
|
| 58 |
+
|
| 59 |
+
# Verify copied files
|
| 60 |
+
for path in [temp_input_path, preview_input_path]:
|
| 61 |
+
if not os.path.exists(path):
|
| 62 |
+
error_msg = f"Error: Copied file {path} does not exist."
|
| 63 |
+
logging.error(error_msg)
|
| 64 |
+
return None, None, error_msg, None, None
|
| 65 |
+
if not os.access(path, os.R_OK):
|
| 66 |
+
error_msg = f"Error: Copied file {path} is not readable."
|
| 67 |
+
logging.error(error_msg)
|
| 68 |
+
return None, None, error_msg, None, None
|
| 69 |
+
if os.path.getsize(path) == 0:
|
| 70 |
+
error_msg = f"Error: Copied file {path} is empty."
|
| 71 |
+
logging.error(error_msg)
|
| 72 |
+
return None, None, error_msg, None, None
|
| 73 |
+
|
| 74 |
+
# Validate image or video
|
| 75 |
+
if is_image_file(temp_input_path):
|
| 76 |
+
img = cv2.imread(temp_input_path)
|
| 77 |
+
if img is None:
|
| 78 |
+
error_msg = f"Error: Could not load image from {temp_input_path}."
|
| 79 |
+
logging.error(error_msg)
|
| 80 |
+
return None, None, error_msg, None, None
|
| 81 |
+
# Check image properties
|
| 82 |
+
height, width, channels = img.shape
|
| 83 |
+
logging.debug(f"Image properties: {width}x{height}, {channels} channels")
|
| 84 |
+
if channels not in (1, 3, 4):
|
| 85 |
+
error_msg = f"Error: Unsupported number of channels ({channels}) in {temp_input_path}. Expected 1, 3, or 4."
|
| 86 |
+
logging.error(error_msg)
|
| 87 |
+
return None, None, error_msg, None, None
|
| 88 |
+
if width == 0 or height == 0:
|
| 89 |
+
error_msg = f"Error: Invalid image dimensions ({width}x{height}) in {temp_input_path}."
|
| 90 |
+
logging.error(error_msg)
|
| 91 |
+
return None, None, error_msg, None, None
|
| 92 |
+
else:
|
| 93 |
+
cap = cv2.VideoCapture(temp_input_path)
|
| 94 |
+
if not cap.isOpened():
|
| 95 |
+
error_msg = f"Error: Could not open video at {temp_input_path}."
|
| 96 |
+
logging.error(error_msg)
|
| 97 |
+
cap.release()
|
| 98 |
+
return None, None, error_msg, None, None
|
| 99 |
+
cap.release()
|
| 100 |
+
|
| 101 |
+
# Set output path
|
| 102 |
+
output_dir = os.path.abspath(os.path.join("apps/gradio_app/temp_data", str(uuid.uuid4())[:8]))
|
| 103 |
os.makedirs(output_dir, exist_ok=True)
|
|
|
|
|
|
|
| 104 |
output_filename = f"{os.path.splitext(os.path.basename(temp_input_path))[0]}_{unique_id}_output{'_output.jpg' if is_image_file(temp_input_path) else '_output.mp4'}"
|
| 105 |
output_path = os.path.join(output_dir, output_filename)
|
| 106 |
logging.debug(f"Output path: {output_path}")
|
| 107 |
|
| 108 |
# Call the infer function
|
| 109 |
+
logging.debug(f"Calling infer with input: {temp_input_path}, output: {output_path}")
|
| 110 |
result_array, plate_texts = infer(temp_input_path, output_path)
|
| 111 |
|
| 112 |
if result_array is None and is_image_file(temp_input_path):
|
| 113 |
+
error_msg = f"Error: Processing failed for {temp_input_path}. 'infer' returned None. Check infer.py logs for details."
|
| 114 |
logging.error(error_msg)
|
| 115 |
+
return None, None, error_msg, preview_input_path if is_image_file(temp_input_path) else None, preview_input_path if not is_image_file(temp_input_path) else None
|
| 116 |
|
| 117 |
# Validate output file for videos
|
| 118 |
if not is_image_file(temp_input_path):
|
| 119 |
if not os.path.exists(output_path):
|
| 120 |
error_msg = f"Error: Output video file {output_path} was not created."
|
| 121 |
logging.error(error_msg)
|
| 122 |
+
return None, None, error_msg, None, preview_input_path
|
| 123 |
# Convert output video to supported format
|
| 124 |
converted_output_path = os.path.join(output_dir, f"converted_{os.path.basename(output_path)}")
|
| 125 |
converted_path = convert_to_supported_format(output_path, converted_output_path)
|
| 126 |
if converted_path is None:
|
| 127 |
error_msg = f"Error: Failed to convert output video {output_path} to supported format."
|
| 128 |
logging.error(error_msg)
|
| 129 |
+
return None, None, error_msg, None, preview_input_path
|
| 130 |
output_path = converted_path
|
| 131 |
|
| 132 |
# Format plate texts
|
| 133 |
if is_image_file(temp_input_path):
|
| 134 |
formatted_texts = "\n".join(plate_texts) if plate_texts else "No plates detected"
|
| 135 |
logging.debug(f"Image processed successfully. Plate texts: {formatted_texts}")
|
| 136 |
+
return result_array, None, formatted_texts, preview_input_path, None
|
| 137 |
else:
|
| 138 |
formatted_texts = []
|
| 139 |
for i, texts in enumerate(plate_texts):
|
|
|
|
| 141 |
formatted_texts.append(f"Frame {i+1}: {', '.join(texts)}")
|
| 142 |
formatted_texts = "\n".join(formatted_texts) if formatted_texts else "No plates detected"
|
| 143 |
logging.debug(f"Video processed successfully. Plate texts: {formatted_texts}")
|
| 144 |
+
return None, output_path, formatted_texts, None, preview_input_path
|
| 145 |
except Exception as e:
|
| 146 |
+
error_message = f"Error processing {file_path}: {str(e)}\n{traceback.format_exc()}"
|
| 147 |
logging.error(error_message)
|
| 148 |
print(error_message)
|
| 149 |
+
return None, None, error_message, preview_input_path if is_image_file(file_path) else None, preview_input_path if not is_image_file(file_path) else None
|
| 150 |
+
finally:
|
| 151 |
+
# Clean up temp directory after processing, but keep preview directory
|
| 152 |
+
if os.path.exists(temp_input_dir):
|
| 153 |
+
shutil.rmtree(temp_input_dir, ignore_errors=True)
|
| 154 |
+
logging.debug(f"Cleaned up temporary directory: {temp_input_dir}")
|
| 155 |
|
| 156 |
def update_preview(file, input_type):
|
| 157 |
"""Return file path for the appropriate preview component based on input type."""
|
| 158 |
if not file:
|
| 159 |
logging.debug("No file provided for preview.")
|
| 160 |
return None, None
|
| 161 |
+
|
| 162 |
+
# Handle both file objects and string paths
|
| 163 |
+
file_path = file.name if hasattr(file, 'name') else file
|
| 164 |
+
logging.debug(f"Updating preview for {input_type}: {file_path}")
|
| 165 |
+
|
| 166 |
# Verify file exists
|
| 167 |
+
if not os.path.exists(file_path):
|
| 168 |
+
logging.error(f"Input file {file_path} does not exist.")
|
| 169 |
return None, None
|
| 170 |
+
|
| 171 |
# Check if video format is supported
|
| 172 |
+
if input_type == "Video" and not file_path.lower().endswith(('.mp4', '.webm')):
|
| 173 |
+
logging.error(f"Unsupported video format for {file_path}. Use MP4 or WebM.")
|
| 174 |
return None, None
|
| 175 |
+
|
| 176 |
+
# Copy to preview directory for persistent display
|
| 177 |
+
unique_id = str(uuid.uuid4())[:8]
|
| 178 |
+
preview_dir = os.path.abspath(os.path.join("apps/gradio_app/preview_data", unique_id))
|
| 179 |
+
os.makedirs(preview_dir, exist_ok=True)
|
| 180 |
+
preview_input_path = os.path.join(preview_dir, os.path.basename(file_path))
|
| 181 |
+
try:
|
| 182 |
+
shutil.copy2(file_path, preview_input_path)
|
| 183 |
+
os.chmod(preview_input_path, 0o644)
|
| 184 |
+
logging.debug(f"Copied preview file to: {preview_input_path}")
|
| 185 |
+
except Exception as e:
|
| 186 |
+
logging.error(f"Error copying preview file to {preview_input_path}: {str(e)}")
|
| 187 |
+
return None, None
|
| 188 |
+
|
| 189 |
+
return preview_input_path if input_type == "Image" else None, preview_input_path if input_type == "Video" else None
|
| 190 |
|
| 191 |
def update_visibility(input_type):
|
| 192 |
"""Update visibility of input/output components based on input type."""
|
|
|
|
| 198 |
gr.update(visible=is_video),
|
| 199 |
gr.update(visible=is_image),
|
| 200 |
gr.update(visible=is_video)
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
def clear_preview_data():
|
| 204 |
+
"""Clear all files in the preview_data directory."""
|
| 205 |
+
preview_data_dir = os.path.abspath("apps/gradio_app/preview_data")
|
| 206 |
+
if os.path.exists(preview_data_dir):
|
| 207 |
+
shutil.rmtree(preview_data_dir, ignore_errors=True)
|
| 208 |
+
logging.debug(f"Cleared preview_data directory: {preview_data_dir}")
|
| 209 |
+
os.makedirs(preview_data_dir, exist_ok=True)
|
apps/old3-gradio_app.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
from gradio_app.config import setup_logging, setup_sys_path
|
| 4 |
+
from gradio_app.processor import gradio_process, update_preview, update_visibility
|
| 5 |
+
|
| 6 |
+
# Initialize logging and sys.path
|
| 7 |
+
setup_logging()
|
| 8 |
+
setup_sys_path()
|
| 9 |
+
|
| 10 |
+
# Load custom CSS
|
| 11 |
+
custom_css = open(os.path.join(os.path.dirname(__file__), "gradio_app", "static", "styles.css"), "r").read()
|
| 12 |
+
|
| 13 |
+
# Gradio Interface
|
| 14 |
+
with gr.Blocks(css=custom_css) as iface:
|
| 15 |
+
gr.Markdown(
|
| 16 |
+
"""
|
| 17 |
+
# License Plate Detection and OCR
|
| 18 |
+
Detect license plates from images or videos and read their text using
|
| 19 |
+
advanced computer vision and OCR for accurate identification.
|
| 20 |
+
""",
|
| 21 |
+
elem_classes="markdown-title"
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
with gr.Row():
|
| 25 |
+
with gr.Column(scale=1):
|
| 26 |
+
input_file = gr.File(label="Upload Image or Video", elem_classes="custom-file-input")
|
| 27 |
+
input_type = gr.Radio(choices=["Image", "Video"], label="Input Type", value="Image", elem_classes="custom-radio")
|
| 28 |
+
with gr.Blocks():
|
| 29 |
+
input_preview_image = gr.Image(label="Input Preview", visible=True, elem_classes="custom-image")
|
| 30 |
+
input_preview_video = gr.Video(label="Input Preview", visible=False, elem_classes="custom-video")
|
| 31 |
+
with gr.Row():
|
| 32 |
+
clear_button = gr.Button("Clear", variant="secondary", elem_classes="custom-button secondary")
|
| 33 |
+
submit_button = gr.Button("Submit", variant="primary", elem_classes="custom-button primary")
|
| 34 |
+
with gr.Column(scale=2):
|
| 35 |
+
with gr.Blocks():
|
| 36 |
+
output_image = gr.Image(label="Processed Output (Image)", type="numpy", visible=True, elem_classes="custom-image")
|
| 37 |
+
output_video = gr.Video(label="Processed Output (Video)", visible=False, elem_classes="custom-video")
|
| 38 |
+
output_text = gr.Textbox(label="Detected License Plates", lines=10, elem_classes="custom-textbox")
|
| 39 |
+
|
| 40 |
+
# Update preview and output visibility when input type changes
|
| 41 |
+
input_type.change(
|
| 42 |
+
fn=update_visibility,
|
| 43 |
+
inputs=input_type,
|
| 44 |
+
outputs=[input_preview_image, input_preview_video, output_image, output_video]
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
# Update preview when file is uploaded
|
| 48 |
+
input_file.change(
|
| 49 |
+
fn=update_preview,
|
| 50 |
+
inputs=[input_file, input_type],
|
| 51 |
+
outputs=[input_preview_image, input_preview_video]
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
# Bind the processing function
|
| 55 |
+
submit_button.click(
|
| 56 |
+
fn=gradio_process,
|
| 57 |
+
inputs=[input_file, input_type],
|
| 58 |
+
outputs=[output_image, output_video, output_text, input_preview_image, input_preview_video]
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Clear button functionality
|
| 62 |
+
clear_button.click(
|
| 63 |
+
fn=lambda: (None, None, None, "Image", None, None, None, None),
|
| 64 |
+
outputs=[input_file, output_image, output_video, input_type, input_preview_image, input_preview_video, output_image, output_video]
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
if __name__ == "__main__":
|
| 68 |
+
iface.launch(share=True)
|
assets/examples/license_plate_detector_ocr/1/lp_image.jpg
ADDED
|
assets/examples/license_plate_detector_ocr/1/lp_image_output.jpg
ADDED
|
assets/examples/license_plate_detector_ocr/2/lp_video.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:72dececeb4cc1ce1da5264211578c9331a3fb31d36bf21ac2f40471d70e2121d
|
| 3 |
+
size 4984385
|
assets/examples/license_plate_detector_ocr/2/lp_video_output.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:72dececeb4cc1ce1da5264211578c9331a3fb31d36bf21ac2f40471d70e2121d
|
| 3 |
+
size 4984385
|
assets/gradio_app_demo.jpg
ADDED
|
Git LFS Details
|
requirements/requirements.txt
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
-
opencv-python
|
| 2 |
-
ultralytics
|
| 3 |
-
roboflow
|
| 4 |
wget
|
|
|
|
| 5 |
ffmpeg-python
|
| 6 |
-
paddleocr
|
| 7 |
-
paddlepaddle-gpu
|
| 8 |
-
paddlepaddle
|
|
|
|
| 1 |
+
opencv-python>=4.11.0.86
|
| 2 |
+
ultralytics>=8.3.162
|
| 3 |
+
roboflow>=1.1.66
|
| 4 |
wget
|
| 5 |
+
albumentations==2.0.8
|
| 6 |
ffmpeg-python
|
| 7 |
+
paddleocr==2.9.0
|
| 8 |
+
paddlepaddle-gpu==2.6.2
|
| 9 |
+
paddlepaddle==2.6.2
|
requirements/requirements_compatible.txt
CHANGED
|
@@ -2,6 +2,7 @@ opencv-python==4.11.0.86
|
|
| 2 |
ultralytics==8.3.162
|
| 3 |
roboflow==1.1.66
|
| 4 |
wget==3.2
|
|
|
|
| 5 |
ffmpeg-python==0.2.0
|
| 6 |
paddleocr==2.9.0
|
| 7 |
paddlepaddle-gpu==2.6.2
|
|
|
|
| 2 |
ultralytics==8.3.162
|
| 3 |
roboflow==1.1.66
|
| 4 |
wget==3.2
|
| 5 |
+
albumentations==2.0.8
|
| 6 |
ffmpeg-python==0.2.0
|
| 7 |
paddleocr==2.9.0
|
| 8 |
paddlepaddle-gpu==2.6.2
|
src/license_plate_detector_ocr/infer.py
CHANGED
|
@@ -1,168 +1,54 @@
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
from
|
| 6 |
-
from inference.paddleocr_infer import process_ocr
|
| 7 |
|
| 8 |
# Append the current directory to sys.path
|
| 9 |
-
sys.path.append(os.path.abspath(os.path.
|
| 10 |
|
| 11 |
def is_image_file(file_path):
|
| 12 |
"""Check if the file is an image based on its extension."""
|
| 13 |
image_extensions = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff'}
|
| 14 |
return os.path.splitext(file_path)[1].lower() in image_extensions
|
| 15 |
|
| 16 |
-
def process_image(model, image_path, output_path=None):
|
| 17 |
-
"""Process a single image for license plate detection and OCR."""
|
| 18 |
-
image = cv2.imread(image_path)
|
| 19 |
-
if image is None:
|
| 20 |
-
print(f"Error: Could not load image from {image_path}")
|
| 21 |
-
return None, None
|
| 22 |
-
|
| 23 |
-
try:
|
| 24 |
-
results = model(image_path)
|
| 25 |
-
except Exception as e:
|
| 26 |
-
print(f"Error during image inference: {e}")
|
| 27 |
-
return None, None
|
| 28 |
-
|
| 29 |
-
plate_texts = []
|
| 30 |
-
for result in results:
|
| 31 |
-
for box in result.boxes:
|
| 32 |
-
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
| 33 |
-
confidence = box.conf[0]
|
| 34 |
-
|
| 35 |
-
# Crop the license plate region
|
| 36 |
-
plate_region = image[y1:y2, x1:x2]
|
| 37 |
-
# Run OCR on the cropped region
|
| 38 |
-
ocr_results = process_ocr(plate_region)
|
| 39 |
-
plate_text = ocr_results[0] if ocr_results else "No text detected"
|
| 40 |
-
plate_texts.append(plate_text)
|
| 41 |
-
|
| 42 |
-
# Draw bounding box and OCR text on the image
|
| 43 |
-
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 44 |
-
label = f"{plate_text} ({confidence:.2f})"
|
| 45 |
-
cv2.putText(image, label, (x1, y1 - 10),
|
| 46 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
| 47 |
-
|
| 48 |
-
# Set default output path if not provided
|
| 49 |
-
if output_path is None:
|
| 50 |
-
output_path = os.path.splitext(image_path)[0] + '_output.jpg'
|
| 51 |
-
|
| 52 |
-
# Ensure output directory exists
|
| 53 |
-
os.makedirs(os.path.dirname(output_path) or '.', exist_ok=True)
|
| 54 |
-
cv2.imwrite(output_path, image)
|
| 55 |
-
print(f"Saved processed image to {output_path}")
|
| 56 |
-
|
| 57 |
-
return image, plate_texts
|
| 58 |
-
|
| 59 |
-
def process_video(model, video_path, output_path=None):
|
| 60 |
-
"""Process a video for license plate detection and OCR, writing text on detected boxes."""
|
| 61 |
-
cap = cv2.VideoCapture(video_path)
|
| 62 |
-
if not cap.isOpened():
|
| 63 |
-
print(f"Error: Could not open video at {video_path}")
|
| 64 |
-
return None, None
|
| 65 |
-
|
| 66 |
-
# Get video properties
|
| 67 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 68 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 69 |
-
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 70 |
-
|
| 71 |
-
# Set default output path if not provided
|
| 72 |
-
if output_path is None:
|
| 73 |
-
output_path = os.path.splitext(video_path)[0] + '_output.mp4'
|
| 74 |
-
|
| 75 |
-
# Ensure output directory exists
|
| 76 |
-
os.makedirs(os.path.dirname(output_path) or '.', exist_ok=True)
|
| 77 |
-
|
| 78 |
-
# Prepare output video
|
| 79 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 80 |
-
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 81 |
-
|
| 82 |
-
frames = []
|
| 83 |
-
all_plate_texts = []
|
| 84 |
-
|
| 85 |
-
while cap.isOpened():
|
| 86 |
-
ret, frame = cap.read()
|
| 87 |
-
if not ret:
|
| 88 |
-
print("End of video or error reading frame.")
|
| 89 |
-
break
|
| 90 |
-
|
| 91 |
-
try:
|
| 92 |
-
results = model(frame)
|
| 93 |
-
except Exception as e:
|
| 94 |
-
print(f"Error during video inference: {e}")
|
| 95 |
-
break
|
| 96 |
-
|
| 97 |
-
frame_plate_texts = []
|
| 98 |
-
boxes_detected = False
|
| 99 |
-
|
| 100 |
-
for result in results:
|
| 101 |
-
for box in result.boxes:
|
| 102 |
-
boxes_detected = True
|
| 103 |
-
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
| 104 |
-
confidence = box.conf[0]
|
| 105 |
-
|
| 106 |
-
# Crop the license plate region
|
| 107 |
-
plate_region = frame[y1:y2, x1:x2]
|
| 108 |
-
|
| 109 |
-
# Run OCR on the cropped region
|
| 110 |
-
ocr_results = process_ocr(plate_region)
|
| 111 |
-
plate_text = ocr_results[0] if ocr_results else "No text detected"
|
| 112 |
-
frame_plate_texts.append(plate_text)
|
| 113 |
-
|
| 114 |
-
# Draw bounding box and OCR text on the frame
|
| 115 |
-
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 116 |
-
label = f"{plate_text} ({confidence:.2f})"
|
| 117 |
-
cv2.putText(frame, label, (x1, y1 - 10),
|
| 118 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
| 119 |
-
|
| 120 |
-
if boxes_detected:
|
| 121 |
-
frames.append(frame)
|
| 122 |
-
all_plate_texts.append(frame_plate_texts)
|
| 123 |
-
else:
|
| 124 |
-
# Append frame even if no boxes detected to maintain video continuity
|
| 125 |
-
frames.append(frame)
|
| 126 |
-
all_plate_texts.append([])
|
| 127 |
-
|
| 128 |
-
out.write(frame)
|
| 129 |
-
|
| 130 |
-
cap.release()
|
| 131 |
-
out.release()
|
| 132 |
-
print(f"Saved processed video to {output_path}")
|
| 133 |
-
|
| 134 |
-
if not frames:
|
| 135 |
-
print("No frames processed.")
|
| 136 |
-
return None, None
|
| 137 |
-
|
| 138 |
-
# Convert list of frames to 4D NumPy array
|
| 139 |
-
video_array = np.stack(frames, axis=0)
|
| 140 |
-
return video_array, all_plate_texts
|
| 141 |
-
|
| 142 |
def infer(input_path, output_path=None):
|
| 143 |
-
"""
|
| 144 |
model_path = "ckpts/yolo/finetune/runs/license_plate_detector/weights/best.pt"
|
| 145 |
|
|
|
|
|
|
|
| 146 |
if not os.path.exists(model_path):
|
| 147 |
-
|
|
|
|
|
|
|
| 148 |
return None, None
|
| 149 |
|
| 150 |
if not os.path.exists(input_path):
|
| 151 |
-
|
|
|
|
|
|
|
| 152 |
return None, None
|
| 153 |
|
| 154 |
try:
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
except Exception as e:
|
| 157 |
-
|
|
|
|
|
|
|
| 158 |
return None, None
|
| 159 |
-
|
| 160 |
-
if is_image_file(input_path):
|
| 161 |
-
result_array, plate_texts = process_image(model, input_path, output_path)
|
| 162 |
-
else:
|
| 163 |
-
result_array, plate_texts = process_video(model, video_path=input_path, output_path=output_path)
|
| 164 |
-
|
| 165 |
-
return result_array, plate_texts
|
| 166 |
|
| 167 |
if __name__ == "__main__":
|
| 168 |
import argparse
|
|
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
+
import logging
|
| 4 |
+
import traceback
|
| 5 |
+
from inference.image_video_processor import process_image, process_video
|
|
|
|
| 6 |
|
| 7 |
# Append the current directory to sys.path
|
| 8 |
+
sys.path.append(os.path.abspath(os.path.dirname(__file__)))
|
| 9 |
|
| 10 |
def is_image_file(file_path):
|
| 11 |
"""Check if the file is an image based on its extension."""
|
| 12 |
image_extensions = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff'}
|
| 13 |
return os.path.splitext(file_path)[1].lower() in image_extensions
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
def infer(input_path, output_path=None):
|
| 16 |
+
"""Process an image or video for license plate detection and OCR."""
|
| 17 |
model_path = "ckpts/yolo/finetune/runs/license_plate_detector/weights/best.pt"
|
| 18 |
|
| 19 |
+
logging.debug(f"Starting inference for {input_path} with output {output_path}")
|
| 20 |
+
|
| 21 |
if not os.path.exists(model_path):
|
| 22 |
+
error_msg = f"Error: Model file not found at {model_path}"
|
| 23 |
+
logging.error(error_msg)
|
| 24 |
+
print(error_msg)
|
| 25 |
return None, None
|
| 26 |
|
| 27 |
if not os.path.exists(input_path):
|
| 28 |
+
error_msg = f"Error: Input file not found at {input_path}"
|
| 29 |
+
logging.error(error_msg)
|
| 30 |
+
print(error_msg)
|
| 31 |
return None, None
|
| 32 |
|
| 33 |
try:
|
| 34 |
+
if is_image_file(input_path):
|
| 35 |
+
result_array, plate_texts = process_image(model_path, input_path, output_path)
|
| 36 |
+
else:
|
| 37 |
+
result_array, plate_texts = process_video(model_path, input_path, output_path)
|
| 38 |
+
|
| 39 |
+
if result_array is None:
|
| 40 |
+
error_msg = f"Error: Processing failed in {'process_image' if is_image_file(input_path) else 'process_video'} for {input_path}"
|
| 41 |
+
logging.error(error_msg)
|
| 42 |
+
print(error_msg)
|
| 43 |
+
return None, None
|
| 44 |
+
|
| 45 |
+
logging.debug(f"Inference successful: {len(plate_texts)} plates detected")
|
| 46 |
+
return result_array, plate_texts
|
| 47 |
except Exception as e:
|
| 48 |
+
error_msg = f"Error during inference for {input_path}: {str(e)}\n{traceback.format_exc()}"
|
| 49 |
+
logging.error(error_msg)
|
| 50 |
+
print(error_msg)
|
| 51 |
return None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
if __name__ == "__main__":
|
| 54 |
import argparse
|
src/license_plate_detector_ocr/inference/image_video_processor.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
from uuid import uuid4
|
| 5 |
+
from inference.yolo_infer import yolo_infer
|
| 6 |
+
from inference.paddleocr_infer import process_ocr
|
| 7 |
+
|
| 8 |
+
def process_image(model_path, image_path, output_path=None):
|
| 9 |
+
"""Process a single image for license plate detection and OCR."""
|
| 10 |
+
image = cv2.imread(image_path)
|
| 11 |
+
if image is None:
|
| 12 |
+
print(f"Error: Could not load image from {image_path}")
|
| 13 |
+
return None, None
|
| 14 |
+
|
| 15 |
+
try:
|
| 16 |
+
results = yolo_infer(model_path, image_path)
|
| 17 |
+
except Exception as e:
|
| 18 |
+
print(f"Error during image inference: {e}")
|
| 19 |
+
return None, None
|
| 20 |
+
|
| 21 |
+
plate_texts = []
|
| 22 |
+
for result in results:
|
| 23 |
+
for box in result.boxes:
|
| 24 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
| 25 |
+
confidence = box.conf[0]
|
| 26 |
+
|
| 27 |
+
# Crop the license plate region
|
| 28 |
+
plate_region = image[y1:y2, x1:x2]
|
| 29 |
+
# Run OCR on the cropped region
|
| 30 |
+
ocr_results = process_ocr(plate_region)
|
| 31 |
+
plate_text = ocr_results[0] if ocr_results else "No text detected"
|
| 32 |
+
plate_texts.append(plate_text)
|
| 33 |
+
|
| 34 |
+
# Draw bounding box and OCR text on the image
|
| 35 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 36 |
+
label = f"{plate_text} ({confidence:.2f})"
|
| 37 |
+
cv2.putText(image, label, (x1, y1 - 10),
|
| 38 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
| 39 |
+
|
| 40 |
+
# Set default output path with UUID if not provided
|
| 41 |
+
if output_path is None:
|
| 42 |
+
output_dir = "apps/gradio_app/temp_data"
|
| 43 |
+
output_path = os.path.join(output_dir, f"output_{uuid4()}.jpg")
|
| 44 |
+
|
| 45 |
+
# Ensure output directory exists
|
| 46 |
+
os.makedirs(os.path.dirname(output_path) or '.', exist_ok=True)
|
| 47 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
| 48 |
+
cv2.imwrite(output_path, image)
|
| 49 |
+
print(f"Saved processed image to {output_path}")
|
| 50 |
+
|
| 51 |
+
return image, plate_texts
|
| 52 |
+
|
| 53 |
+
def process_video(model_path, video_path, output_path=None):
|
| 54 |
+
"""Process a video for license plate detection and OCR."""
|
| 55 |
+
cap = cv2.VideoCapture(video_path)
|
| 56 |
+
if not cap.isOpened():
|
| 57 |
+
print(f"Error: Could not open video at {video_path}")
|
| 58 |
+
return None, None
|
| 59 |
+
|
| 60 |
+
# Get video properties
|
| 61 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 62 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 63 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 64 |
+
|
| 65 |
+
# Set default output path with UUID if not provided
|
| 66 |
+
if output_path is None:
|
| 67 |
+
output_dir = "apps/gradio_app/temp_data"
|
| 68 |
+
output_path = os.path.join(output_dir, f"output_{uuid4()}.mp4")
|
| 69 |
+
|
| 70 |
+
# Ensure output directory exists
|
| 71 |
+
os.makedirs(os.path.dirname(output_path) or '.', exist_ok=True)
|
| 72 |
+
|
| 73 |
+
# Prepare output video
|
| 74 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 75 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 76 |
+
|
| 77 |
+
frames = []
|
| 78 |
+
all_plate_texts = []
|
| 79 |
+
|
| 80 |
+
while cap.isOpened():
|
| 81 |
+
ret, frame = cap.read()
|
| 82 |
+
if not ret:
|
| 83 |
+
print("End of video or error reading frame.")
|
| 84 |
+
break
|
| 85 |
+
|
| 86 |
+
try:
|
| 87 |
+
results = yolo_infer(model_path, frame)
|
| 88 |
+
except Exception as e:
|
| 89 |
+
print(f"Error during video inference: {e}")
|
| 90 |
+
break
|
| 91 |
+
|
| 92 |
+
frame_plate_texts = []
|
| 93 |
+
boxes_detected = False
|
| 94 |
+
|
| 95 |
+
for result in results:
|
| 96 |
+
for box in result.boxes:
|
| 97 |
+
boxes_detected = True
|
| 98 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
| 99 |
+
confidence = box.conf[0]
|
| 100 |
+
|
| 101 |
+
# Crop the license plate region
|
| 102 |
+
plate_region = frame[y1:y2, x1:x2]
|
| 103 |
+
|
| 104 |
+
# Run OCR on the cropped region
|
| 105 |
+
ocr_results = process_ocr(plate_region)
|
| 106 |
+
plate_text = ocr_results[0] if ocr_results else "No text detected"
|
| 107 |
+
frame_plate_texts.append(plate_text)
|
| 108 |
+
|
| 109 |
+
# Draw bounding box and OCR text on the frame
|
| 110 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 111 |
+
label = f"{plate_text} ({confidence:.2f})"
|
| 112 |
+
cv2.putText(frame, label, (x1, y1 - 10),
|
| 113 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
| 114 |
+
|
| 115 |
+
if boxes_detected:
|
| 116 |
+
frames.append(frame)
|
| 117 |
+
all_plate_texts.append(frame_plate_texts)
|
| 118 |
+
else:
|
| 119 |
+
frames.append(frame)
|
| 120 |
+
all_plate_texts.append([])
|
| 121 |
+
|
| 122 |
+
out.write(frame)
|
| 123 |
+
|
| 124 |
+
cap.release()
|
| 125 |
+
out.release()
|
| 126 |
+
print(f"Saved processed video to {output_path}")
|
| 127 |
+
|
| 128 |
+
if not frames:
|
| 129 |
+
print("No frames processed.")
|
| 130 |
+
return None, None
|
| 131 |
+
|
| 132 |
+
# Convert list of frames to 4D NumPy array
|
| 133 |
+
video_array = np.stack(frames, axis=0)
|
| 134 |
+
return video_array, all_plate_texts
|
src/license_plate_detector_ocr/inference/yolo_infer.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ultralytics import YOLO
|
| 2 |
+
|
| 3 |
+
_model_cache = None
|
| 4 |
+
|
| 5 |
+
def load_yolo_model(model_path):
|
| 6 |
+
"""Load and cache the YOLO model from the specified path."""
|
| 7 |
+
global _model_cache
|
| 8 |
+
if _model_cache is None:
|
| 9 |
+
try:
|
| 10 |
+
_model_cache = YOLO(model_path, verbose=False)
|
| 11 |
+
except Exception as e:
|
| 12 |
+
raise Exception(f"Error loading YOLO model: {e}")
|
| 13 |
+
return _model_cache
|
| 14 |
+
|
| 15 |
+
def yolo_infer(model_path, input_data):
|
| 16 |
+
"""Perform YOLO inference on input data using the cached model."""
|
| 17 |
+
try:
|
| 18 |
+
model = load_yolo_model(model_path)
|
| 19 |
+
results = model(input_data, verbose=False)
|
| 20 |
+
return results
|
| 21 |
+
except Exception as e:
|
| 22 |
+
print(f"Error during YOLO inference: {e}")
|
| 23 |
+
return []
|
| 24 |
+
|
| 25 |
+
if __name__ == "__main__":
|
| 26 |
+
print("This module is intended for import, not direct execution.")
|
src/license_plate_detector_ocr/old2-infer.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
from ultralytics import YOLO
|
| 6 |
+
from inference.paddleocr_infer import process_ocr
|
| 7 |
+
|
| 8 |
+
# Append the current directory to sys.path
|
| 9 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__))))
|
| 10 |
+
|
| 11 |
+
def is_image_file(file_path):
|
| 12 |
+
"""Check if the file is an image based on its extension."""
|
| 13 |
+
image_extensions = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff'}
|
| 14 |
+
return os.path.splitext(file_path)[1].lower() in image_extensions
|
| 15 |
+
|
| 16 |
+
def process_image(model, image_path, output_path=None):
|
| 17 |
+
"""Process a single image for license plate detection and OCR."""
|
| 18 |
+
image = cv2.imread(image_path)
|
| 19 |
+
if image is None:
|
| 20 |
+
print(f"Error: Could not load image from {image_path}")
|
| 21 |
+
return None, None
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
results = model(image_path)
|
| 25 |
+
except Exception as e:
|
| 26 |
+
print(f"Error during image inference: {e}")
|
| 27 |
+
return None, None
|
| 28 |
+
|
| 29 |
+
plate_texts = []
|
| 30 |
+
for result in results:
|
| 31 |
+
for box in result.boxes:
|
| 32 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
| 33 |
+
confidence = box.conf[0]
|
| 34 |
+
|
| 35 |
+
# Crop the license plate region
|
| 36 |
+
plate_region = image[y1:y2, x1:x2]
|
| 37 |
+
# Run OCR on the cropped region
|
| 38 |
+
ocr_results = process_ocr(plate_region)
|
| 39 |
+
plate_text = ocr_results[0] if ocr_results else "No text detected"
|
| 40 |
+
plate_texts.append(plate_text)
|
| 41 |
+
|
| 42 |
+
# Draw bounding box and OCR text on the image
|
| 43 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 44 |
+
label = f"{plate_text} ({confidence:.2f})"
|
| 45 |
+
cv2.putText(image, label, (x1, y1 - 10),
|
| 46 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
| 47 |
+
|
| 48 |
+
# Set default output path if not provided
|
| 49 |
+
if output_path is None:
|
| 50 |
+
output_path = os.path.splitext(image_path)[0] + '_output.jpg'
|
| 51 |
+
|
| 52 |
+
# Ensure output directory exists
|
| 53 |
+
os.makedirs(os.path.dirname(output_path) or '.', exist_ok=True)
|
| 54 |
+
cv2.imwrite(output_path, image)
|
| 55 |
+
print(f"Saved processed image to {output_path}")
|
| 56 |
+
|
| 57 |
+
return image, plate_texts
|
| 58 |
+
|
| 59 |
+
def process_video(model, video_path, output_path=None):
|
| 60 |
+
"""Process a video for license plate detection and OCR, writing text on detected boxes."""
|
| 61 |
+
cap = cv2.VideoCapture(video_path)
|
| 62 |
+
if not cap.isOpened():
|
| 63 |
+
print(f"Error: Could not open video at {video_path}")
|
| 64 |
+
return None, None
|
| 65 |
+
|
| 66 |
+
# Get video properties
|
| 67 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 68 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 69 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 70 |
+
|
| 71 |
+
# Set default output path if not provided
|
| 72 |
+
if output_path is None:
|
| 73 |
+
output_path = os.path.splitext(video_path)[0] + '_output.mp4'
|
| 74 |
+
|
| 75 |
+
# Ensure output directory exists
|
| 76 |
+
os.makedirs(os.path.dirname(output_path) or '.', exist_ok=True)
|
| 77 |
+
|
| 78 |
+
# Prepare output video
|
| 79 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 80 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 81 |
+
|
| 82 |
+
frames = []
|
| 83 |
+
all_plate_texts = []
|
| 84 |
+
|
| 85 |
+
while cap.isOpened():
|
| 86 |
+
ret, frame = cap.read()
|
| 87 |
+
if not ret:
|
| 88 |
+
print("End of video or error reading frame.")
|
| 89 |
+
break
|
| 90 |
+
|
| 91 |
+
try:
|
| 92 |
+
results = model(frame)
|
| 93 |
+
except Exception as e:
|
| 94 |
+
print(f"Error during video inference: {e}")
|
| 95 |
+
break
|
| 96 |
+
|
| 97 |
+
frame_plate_texts = []
|
| 98 |
+
boxes_detected = False
|
| 99 |
+
|
| 100 |
+
for result in results:
|
| 101 |
+
for box in result.boxes:
|
| 102 |
+
boxes_detected = True
|
| 103 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
| 104 |
+
confidence = box.conf[0]
|
| 105 |
+
|
| 106 |
+
# Crop the license plate region
|
| 107 |
+
plate_region = frame[y1:y2, x1:x2]
|
| 108 |
+
|
| 109 |
+
# Run OCR on the cropped region
|
| 110 |
+
ocr_results = process_ocr(plate_region)
|
| 111 |
+
plate_text = ocr_results[0] if ocr_results else "No text detected"
|
| 112 |
+
frame_plate_texts.append(plate_text)
|
| 113 |
+
|
| 114 |
+
# Draw bounding box and OCR text on the frame
|
| 115 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 116 |
+
label = f"{plate_text} ({confidence:.2f})"
|
| 117 |
+
cv2.putText(frame, label, (x1, y1 - 10),
|
| 118 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
| 119 |
+
|
| 120 |
+
if boxes_detected:
|
| 121 |
+
frames.append(frame)
|
| 122 |
+
all_plate_texts.append(frame_plate_texts)
|
| 123 |
+
else:
|
| 124 |
+
# Append frame even if no boxes detected to maintain video continuity
|
| 125 |
+
frames.append(frame)
|
| 126 |
+
all_plate_texts.append([])
|
| 127 |
+
|
| 128 |
+
out.write(frame)
|
| 129 |
+
|
| 130 |
+
cap.release()
|
| 131 |
+
out.release()
|
| 132 |
+
print(f"Saved processed video to {output_path}")
|
| 133 |
+
|
| 134 |
+
if not frames:
|
| 135 |
+
print("No frames processed.")
|
| 136 |
+
return None, None
|
| 137 |
+
|
| 138 |
+
# Convert list of frames to 4D NumPy array
|
| 139 |
+
video_array = np.stack(frames, axis=0)
|
| 140 |
+
return video_array, all_plate_texts
|
| 141 |
+
|
| 142 |
+
def infer(input_path, output_path=None):
|
| 143 |
+
"""Main function to process either an image or video for license plate detection and OCR."""
|
| 144 |
+
model_path = "ckpts/yolo/finetune/runs/license_plate_detector/weights/best.pt"
|
| 145 |
+
|
| 146 |
+
if not os.path.exists(model_path):
|
| 147 |
+
print(f"Error: Model file not found at {model_path}")
|
| 148 |
+
return None, None
|
| 149 |
+
|
| 150 |
+
if not os.path.exists(input_path):
|
| 151 |
+
print(f"Error: Input file not found at {input_path}")
|
| 152 |
+
return None, None
|
| 153 |
+
|
| 154 |
+
try:
|
| 155 |
+
model = YOLO(model_path)
|
| 156 |
+
except Exception as e:
|
| 157 |
+
print(f"Error loading model: {e}")
|
| 158 |
+
return None, None
|
| 159 |
+
|
| 160 |
+
if is_image_file(input_path):
|
| 161 |
+
result_array, plate_texts = process_image(model, input_path, output_path)
|
| 162 |
+
else:
|
| 163 |
+
result_array, plate_texts = process_video(model, video_path=input_path, output_path=output_path)
|
| 164 |
+
|
| 165 |
+
return result_array, plate_texts
|
| 166 |
+
|
| 167 |
+
if __name__ == "__main__":
|
| 168 |
+
import argparse
|
| 169 |
+
parser = argparse.ArgumentParser(description="Detect and read license plates in an image or video.")
|
| 170 |
+
parser.add_argument("--input_path", type=str, required=True, help="Path to the input image or video file")
|
| 171 |
+
parser.add_argument("--output_path", type=str, default=None, help="Path to save the output file (optional)")
|
| 172 |
+
args = parser.parse_args()
|
| 173 |
+
result_array, plate_texts = infer(args.input_path, args.output_path)
|
src/license_plate_detector_ocr/old3-infer.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import shutil
|
| 4 |
+
from inference.image_video_processor import process_image, process_video
|
| 5 |
+
|
| 6 |
+
# Append the current directory to sys.path
|
| 7 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__))))
|
| 8 |
+
|
| 9 |
+
def is_image_file(file_path):
|
| 10 |
+
"""Check if the file is an image based on its extension."""
|
| 11 |
+
image_extensions = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff'}
|
| 12 |
+
return os.path.splitext(file_path)[1].lower() in image_extensions
|
| 13 |
+
|
| 14 |
+
def clear_temp_directory(temp_dir="apps/gradio_app/temp_data"):
|
| 15 |
+
"""Remove all files in the specified temporary directory."""
|
| 16 |
+
if os.path.exists(temp_dir):
|
| 17 |
+
try:
|
| 18 |
+
for filename in os.listdir(temp_dir):
|
| 19 |
+
file_path = os.path.join(temp_dir, filename)
|
| 20 |
+
if os.path.isfile(file_path) or os.path.islink(file_path):
|
| 21 |
+
os.unlink(file_path)
|
| 22 |
+
elif os.path.isdir(file_path):
|
| 23 |
+
shutil.rmtree(file_path)
|
| 24 |
+
print(f"Cleared temporary directory: {temp_dir}")
|
| 25 |
+
except Exception as e:
|
| 26 |
+
print(f"Error clearing temporary directory {temp_dir}: {e}")
|
| 27 |
+
|
| 28 |
+
def infer(input_path, output_path=None):
|
| 29 |
+
"""Process an image or video for license plate detection and OCR."""
|
| 30 |
+
model_path = "ckpts/yolo/finetune/runs/license_plate_detector/weights/best.pt"
|
| 31 |
+
|
| 32 |
+
if not os.path.exists(model_path):
|
| 33 |
+
print(f"Error: Model file not found at {model_path}")
|
| 34 |
+
return None, None
|
| 35 |
+
|
| 36 |
+
if not os.path.exists(input_path):
|
| 37 |
+
print(f"Error: Input file not found at {input_path}")
|
| 38 |
+
return None, None
|
| 39 |
+
|
| 40 |
+
# Clear temporary directory before new inference
|
| 41 |
+
clear_temp_directory()
|
| 42 |
+
|
| 43 |
+
if is_image_file(input_path):
|
| 44 |
+
result_array, plate_texts = process_image(model_path, input_path, output_path)
|
| 45 |
+
else:
|
| 46 |
+
result_array, plate_texts = process_video(model_path, input_path, output_path)
|
| 47 |
+
|
| 48 |
+
return result_array, plate_texts
|
| 49 |
+
|
| 50 |
+
if __name__ == "__main__":
|
| 51 |
+
import argparse
|
| 52 |
+
parser = argparse.ArgumentParser(description="Detect and read license plates in an image or video.")
|
| 53 |
+
parser.add_argument("--input_path", type=str, required=True, help="Path to the input image or video file")
|
| 54 |
+
parser.add_argument("--output_path", type=str, default=None, help="Path to save the output file (optional)")
|
| 55 |
+
args = parser.parse_args()
|
| 56 |
+
result_array, plate_texts = infer(args.input_path, args.output_path)
|