Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from dataclasses import dataclass | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| class CausalSelfAttention(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| assert config.n_embd % config.n_head == 0 | |
| # key, query, value projections for all heads, but in a batch | |
| self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) | |
| # output projection | |
| self.c_proj = nn.Linear(config.n_embd, config.n_embd) | |
| self.c_proj.NANGPT_SCALE_INIT = 1 | |
| # regularization | |
| self.n_head = config.n_head | |
| self.n_embd = config.n_embd | |
| self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size)) | |
| def forward(self, x): | |
| B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) | |
| # calculate query, key, values for all heads in batch and move head forward to be the batch dim | |
| # nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs | |
| # e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer | |
| qkv = self.c_attn(x) | |
| q, k, v = qkv.split(self.n_embd, dim=2) | |
| k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
| q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
| v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
| # att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
| # att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) | |
| # att = F.softmax(att, dim=-1) | |
| # y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) | |
| y = F.scaled_dot_product_attention(q, k, v, is_causal = True) # Flash attention | |
| y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side | |
| # output projection | |
| y = self.c_proj(y) | |
| return y | |
| class MLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) | |
| self.gelu = nn.GELU(approximate='tanh') | |
| self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) | |
| self.c_proj.NANOGPT_SCALE_INIT = 1 | |
| def forward(self, x): | |
| x = self.c_fc(x) | |
| x = self.gelu(x) | |
| x = self.c_proj(x) | |
| return x | |
| class Block(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.ln_1 = nn.LayerNorm(config.n_embd) | |
| self.attn = CausalSelfAttention(config) | |
| self.ln_2 = nn.LayerNorm(config.n_embd) | |
| self.mlp = MLP(config) | |
| def forward(self, x): | |
| x = x + self.attn(self.ln_1(x)) | |
| x = x + self.mlp(self.ln_2(x)) | |
| return x | |
| class GPTConfig: | |
| block_size: int = 1024 # max sequence length | |
| vocab_size: int = 50304 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token | |
| n_layer: int = 12 # number of layers | |
| n_head: int = 12 # number of heads | |
| n_embd: int = 768 # embedding dimension | |
| class GPT(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.transformer = nn.ModuleDict(dict( | |
| wte = nn.Embedding(config.vocab_size, config.n_embd), | |
| wpe = nn.Embedding(config.block_size, config.n_embd), | |
| h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
| ln_f = nn.LayerNorm(config.n_embd), | |
| )) | |
| self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
| # weight sharing | |
| self.transformer.wte.weight = self.lm_head.weight | |
| # weight initialization | |
| self.apply(self._init_weights) | |
| def _init_weights(self, module): | |
| if isinstance(module, nn.Linear): | |
| std = 0.02 | |
| if hasattr(module, 'NANGPT_SCALE_INIT'): | |
| std *= (2 * self.config.n_layer) ** -0.5 | |
| torch.nn.init.normal_(module.weight, mean = 0.0, std = std) | |
| if module.bias is not None: | |
| torch.nn.init.zeros_(module.bias) | |
| elif isinstance(module, nn.Embedding): | |
| torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02) | |
| def forward(self, idx, targets=None): | |
| # idx is of shape (B, T) | |
| B, T = idx.size() | |
| assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" | |
| # forward the token and posisition embeddings | |
| pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T) | |
| pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd) | |
| tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd) | |
| x = tok_emb + pos_emb | |
| # forward the blocks of the transformer | |
| for block in self.transformer.h: | |
| x = block(x) | |
| # forward the final layernorm and the classifier | |
| x = self.transformer.ln_f(x) | |
| logits = self.lm_head(x) # (B, T, vocab_size) | |
| loss = None | |
| if targets is not None: | |
| loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
| return logits, loss | |
| device = 'cpu' | |
| if torch.cuda.is_available(): | |
| device = 'cuda' | |
| elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): | |
| device = "mps" | |
| #print(f"using device: {device}") | |
| # SEED | |
| torch.manual_seed(1337) | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed(1337) | |
| # CHANGES IN CURRENT CODE | |
| torch.set_float32_matmul_precision('high') | |
| model = GPT(GPTConfig()) | |
| model = torch.load('curr_model.pth', map_location=torch.device(device)) | |
| model.to(device) | |
| model.eval() | |
| st.title("Shakespearean Text Generation with GPT-2 Model") | |
| # User input for text, num_return_sequences, and max_length | |
| input_text = st.text_area("Enter initialization text:", "") | |
| num_return_sequences = st.number_input("Number of return sequences:", min_value=1, value=1, step=1) | |
| max_length = st.number_input("Maximum length of generated text:", min_value=10, value=50, step=1) | |
| # Set default values | |
| default_text = "Hello, I'm a language model," | |
| default_num_return_sequences = 1 | |
| default_max_length = 50 | |
| # Use user input if provided, otherwise use default | |
| input_text = input_text if input_text else default_text | |
| num_return_sequences = num_return_sequences if num_return_sequences else default_num_return_sequences | |
| max_length = max_length if max_length else default_max_length | |
| import tiktoken | |
| enc = tiktoken.get_encoding('gpt2') | |
| tokens = enc.encode(input_text) | |
| tokens = torch.tensor(tokens, dtype= torch.long) # (8,) #check tiktoken app | |
| tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1) # (5, 8) | |
| x = tokens.to(device) | |
| torch.manual_seed(42) | |
| torch.cuda.manual_seed(42) | |
| if st.button("Generate"): | |
| try: | |
| # Encode input text and generate output | |
| while x.size(1) < max_length: | |
| # forward the model to get the logits | |
| with torch.no_grad(): | |
| logits = model(x)[0] # (B, T, vocab_size) | |
| # take the logits at the last position | |
| logits = logits[:, -1, :] # (B, vocab_size) | |
| # get the probabilities | |
| probs = F.softmax(logits, dim=-1) | |
| # do top-k sampling of 50 (huggingface pipeline default) | |
| # topk_probs here becomes (5, 50), topk_indices is (5, 50) | |
| topk_probs, topk_indices = torch.topk(probs, 50, dim=-1) | |
| # select a token from the top-k probabilities | |
| # note: multinomial does not demand the input to sum to 1 | |
| ix = torch.multinomial(topk_probs, 1) # (B, 1) | |
| # gather the corresponding indices | |
| xcol = torch.gather(topk_indices, -1, ix) # (B, 1) | |
| # append to the sequence | |
| x = torch.cat((x, xcol), dim=1) | |
| # print the generated text | |
| for i in range(num_return_sequences): | |
| tokens = x[i, :max_length].tolist() | |
| decoded = enc.decode(tokens) | |
| st.write(f"> Generated text {i + 1}:") | |
| st.write(decoded) | |
| except Exception as e: | |
| st.error(f"Error generating text: {e}") | |