Spaces:
Build error
Build error
| import gradio as gr | |
| import spaces | |
| import torch | |
| from PIL import Image | |
| from transformers import pipeline | |
| import matplotlib.pyplot as plt | |
| import io | |
| model_pipeline = pipeline("object-detection", model="edm-research/detr-resnet-50-dc5-fashionpedia-finetuned") | |
| COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], | |
| [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]] | |
| def get_output_figure(pil_img, results, threshold): | |
| plt.figure(figsize=(16, 10)) | |
| plt.imshow(pil_img) | |
| ax = plt.gca() | |
| colors = COLORS * 100 | |
| for result in results: | |
| score = result['score'] | |
| label = result['label'] | |
| box = list(result['box'].values()) | |
| if score > threshold: | |
| c = COLORS[hash(label) % len(COLORS)] | |
| ax.add_patch(plt.Rectangle((box[0], box[1]), box[2] - box[0], box[3] - box[1], fill=False, color=c, linewidth=3)) | |
| text = f'{label}: {score:0.2f}' | |
| ax.text(box[0], box[1], text, fontsize=15, | |
| bbox=dict(facecolor='yellow', alpha=0.5)) | |
| plt.axis('off') | |
| return plt.gcf() | |
| def detect(image): | |
| results = model_pipeline(image) | |
| print(results) | |
| output_figure = get_output_figure(image, results, threshold=0.7) | |
| buf = io.BytesIO() | |
| output_figure.savefig(buf, bbox_inches='tight') | |
| buf.seek(0) | |
| output_pil_img = Image.open(buf) | |
| return output_pil_img | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Object detection with DETR fine tuned on detection-datasets/fashionpedia") | |
| gr.Markdown( | |
| """ | |
| This application uses a fine tuned DETR (DEtection TRansformers) to detect objects on images. | |
| This version was trained using detection-datasets/fashionpedia dataset. | |
| You can load an image and see the predictions for the objects detected. | |
| """ | |
| ) | |
| gr.Interface( | |
| fn=detect, | |
| inputs=gr.Image(label="Input image", type="pil"), | |
| outputs=[ | |
| gr.Image(label="Output prediction", type="pil") | |
| ] | |
| ) | |
| demo.launch(show_error=True) | |