Spaces:
Sleeping
Sleeping
| import pandas as pd | |
| import plotly.express as px | |
| import streamlit as st | |
| from transformers import pipeline | |
| import datetime | |
| import matplotlib.pyplot as plt | |
| # Function to add background image to the app | |
| def add_bg_from_url(image_url): | |
| st.markdown( | |
| f""" | |
| <style> | |
| .stApp {{ | |
| background-image: url({image_url}); | |
| background-size: cover; | |
| background-position: center center; | |
| background-repeat: no-repeat; | |
| }} | |
| </style> | |
| """, | |
| unsafe_allow_html=True | |
| ) | |
| # Set background image (it will remain even after file upload) | |
| add_bg_from_url('https://huggingface.co/spaces/engralimalik/Smart-Expense-Tracker/resolve/main/top-view-finance-business-elements.jpg') | |
| # File upload | |
| uploaded_file = st.file_uploader("Upload your expense CSV file", type=["csv"]) | |
| if uploaded_file: | |
| df = pd.read_csv(uploaded_file) | |
| # Display first few rows to the user for format verification | |
| st.write("Here are the first few entries in your file for format verification:") | |
| st.write(df.head()) | |
| # Ensure 'Amount' is numeric and 'Date' is in datetime format | |
| df['Amount'] = pd.to_numeric(df['Amount'], errors='coerce') | |
| df['Date'] = pd.to_datetime(df['Date']) | |
| # Initialize Hugging Face model for zero-shot classification | |
| classifier = pipeline('zero-shot-classification', model='roberta-large-mnli') | |
| categories = ["Groceries", "Rent", "Utilities", "Entertainment", "Dining", "Transportation"] | |
| # Function to categorize | |
| def categorize_expense(description): | |
| result = classifier(description, candidate_labels=categories) | |
| return result['labels'][0] # Most probable category | |
| # Apply categorization | |
| df['Category'] = df['Description'].apply(categorize_expense) | |
| # Sidebar for setting the monthly budget using sliders | |
| st.sidebar.header("Set Your Monthly Budget") | |
| groceries_budget = st.sidebar.slider("Groceries Budget", 0, 1000, 300) | |
| rent_budget = st.sidebar.slider("Rent Budget", 0, 5000, 1000) | |
| utilities_budget = st.sidebar.slider("Utilities Budget", 0, 500, 150) | |
| entertainment_budget = st.sidebar.slider("Entertainment Budget", 0, 1000, 100) | |
| dining_budget = st.sidebar.slider("Dining Budget", 0, 1000, 150) | |
| transportation_budget = st.sidebar.slider("Transportation Budget", 0, 500, 120) | |
| # Store the updated budget values | |
| budgets = { | |
| "Groceries": groceries_budget, | |
| "Rent": rent_budget, | |
| "Utilities": utilities_budget, | |
| "Entertainment": entertainment_budget, | |
| "Dining": dining_budget, | |
| "Transportation": transportation_budget | |
| } | |
| # Get the minimum and maximum dates from the uploaded file | |
| min_date = df['Date'].min() | |
| max_date = df['Date'].max() | |
| # Add a date slider for start and end date based on data from the uploaded file | |
| start_date = st.sidebar.date_input("Start Date", min_date) | |
| end_date = st.sidebar.date_input("End Date", max_date) | |
| # Filter data by date range | |
| df_filtered = df[(df['Date'] >= pd.to_datetime(start_date)) & (df['Date'] <= pd.to_datetime(end_date))] | |
| # Track if any category exceeds its budget | |
| df_filtered['Budget_Exceeded'] = df_filtered.apply(lambda row: row['Amount'] > budgets.get(row['Category'], 0), axis=1) | |
| # Show categories that exceeded their budget | |
| exceeded_budget = df_filtered[df_filtered['Budget_Exceeded'] == True] | |
| st.write("Categories that exceeded the budget:", exceeded_budget[['Date', 'Category', 'Amount']]) | |
| # Visualizations | |
| # 1. Pie Chart for expense distribution by category | |
| category_expenses = df_filtered.groupby('Category')['Amount'].sum() | |
| fig1 = px.pie(category_expenses, values=category_expenses.values, names=category_expenses.index, title="Expense Distribution by Category") | |
| st.plotly_chart(fig1) | |
| # 2. Monthly Spending Trends (Line Chart) | |
| df_filtered['Month'] = df_filtered['Date'].dt.to_period('M').astype(str) # Convert Period to string for Plotly compatibility | |
| monthly_expenses = df_filtered.groupby('Month')['Amount'].sum() | |
| # Convert monthly_expenses into DataFrame for correct plotting | |
| monthly_expenses_df = monthly_expenses.reset_index() | |
| if not monthly_expenses_df.empty: | |
| fig2 = px.line(monthly_expenses_df, x='Month', y='Amount', title="Monthly Expenses", labels={"Month": "Month", "Amount": "Amount ($)"}) | |
| st.plotly_chart(fig2) | |
| else: | |
| st.write("No data to display for the selected date range.") | |
| # 3. Monthly Spending vs Budget (Bar Chart) | |
| if not monthly_expenses_df.empty: | |
| monthly_expenses_df = pd.DataFrame({ | |
| 'Actual': monthly_expenses, | |
| 'Budget': [sum(budgets.values())] * len(monthly_expenses) # Same budget for simplicity | |
| }) | |
| # Create a Matplotlib figure for the bar chart | |
| fig3, ax = plt.subplots(figsize=(10, 6)) | |
| monthly_expenses_df.plot(kind='bar', ax=ax) | |
| ax.set_title('Monthly Spending vs Budget') | |
| ax.set_ylabel('Amount ($)') | |
| ax.set_xlabel('Month') | |
| # Use st.pyplot to display the figure | |
| st.pyplot(fig3) | |
| else: | |
| st.write("No data to display for the selected date range.") | |