|
|
import os |
|
|
import imageio |
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
import torch |
|
|
torch.manual_seed(1024) |
|
|
|
|
|
from inference_utils import inference |
|
|
from face_utils import get_face_img, get_faces_video |
|
|
from batch_face import RetinaFace |
|
|
face_detector = RetinaFace(gpu_id=0) if torch.cuda.is_available() else RetinaFace(gpu_id=-1) |
|
|
|
|
|
|
|
|
def check_if_image_file(filename): |
|
|
return any(filename.endswith(extension) for extension in [".png", ".jpg", ".jpeg", ".PNG", ".JPG", ".JPEG"]) |
|
|
|
|
|
|
|
|
def check_if_video_file(filename): |
|
|
return any(filename.endswith(extension) for extension in [".mp4", ".avi"]) |
|
|
|
|
|
def concat_image(image1, image2, image3): |
|
|
|
|
|
image1 = image1.resize(image3.size) |
|
|
image2 = image2.resize(image3.size) |
|
|
concat_img = Image.new("RGB", (image3.width*3, image3.height)) |
|
|
concat_img.paste(image1, (0, 0)) |
|
|
concat_img.paste(image2, (image3.width, 0)) |
|
|
concat_img.paste(image3, (image3.width*2, 0)) |
|
|
return concat_img |
|
|
|
|
|
if __name__ == "__main__": |
|
|
import argparse |
|
|
from tqdm import tqdm |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument("--id_input", type=str, help="Path to the input, can be an image, a video", required=True) |
|
|
parser.add_argument("--makeup_reference", type=str, help="Path to the makeup image file", required=True) |
|
|
parser.add_argument("--fast_test", action="store_true", help="Use fast test mode, only process every 5 frames") |
|
|
parser.add_argument("--output_dir", type=str, default="./output") |
|
|
args = parser.parse_args() |
|
|
|
|
|
id_input = args.id_input |
|
|
makeup_reference = args.makeup_reference |
|
|
output_dir = args.output_dir |
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
id_basename = os.path.basename(id_input).split(".")[0] |
|
|
if check_if_video_file(id_input): |
|
|
|
|
|
frames, coords = get_faces_video(face_detector, id_input) |
|
|
id_images = frames if not args.fast_test else frames[::5] |
|
|
coords = coords if not args.fast_test else coords[::5] |
|
|
elif check_if_image_file(id_input): |
|
|
frame, coord = get_face_img(face_detector, id_input) |
|
|
id_images = [frame] |
|
|
coords = [coord] |
|
|
else: |
|
|
raise ValueError("Unsupported file format for id_input") |
|
|
|
|
|
makeup_basename = os.path.basename(makeup_reference).split(".")[0] |
|
|
if check_if_image_file(makeup_reference): |
|
|
makeup_image_pil, _ = get_face_img(face_detector, makeup_reference) |
|
|
else: |
|
|
raise ValueError("Unsupported file format for makeup_reference") |
|
|
|
|
|
if len(id_images) == 0: |
|
|
raise ValueError("No input images loaded") |
|
|
elif len(id_images) == 1: |
|
|
result_img = inference(id_images[0], makeup_image_pil) |
|
|
|
|
|
concat_img = concat_image(id_images[0], makeup_image_pil, result_img) |
|
|
concat_img.save(os.path.join(output_dir, id_basename + makeup_basename + '.png')) |
|
|
print(f"Output Image Saved to {os.path.join(output_dir, id_basename + makeup_basename + '.png')}") |
|
|
elif len(id_images) > 1: |
|
|
|
|
|
try: |
|
|
fps = imageio.get_reader(id_input).get_meta_data()["fps"] |
|
|
except: |
|
|
print("Failed to get the fps of the video, using default 25 fps") |
|
|
fps = 25 |
|
|
writer = imageio.get_writer(os.path.join(output_dir, id_basename + makeup_basename + '.mp4'), fps=fps if not args.fast_test else fps/5, quality=9, codec="libx264") |
|
|
for id_image_pil in tqdm(id_images): |
|
|
result_img = inference(id_image_pil, makeup_image_pil) |
|
|
concat_img = concat_image(id_image_pil, makeup_image_pil, result_img) |
|
|
writer.append_data(np.array(concat_img)) |
|
|
writer.close() |
|
|
print(f"Output Video Saved to {os.path.join(output_dir, id_basename + makeup_basename + '.mp4')}") |
|
|
|