import spaces import gradio as gr from inference_utils import inference @spaces.GPU def send_to_model(id_image, makeup_image, guidance_scale): if guidance_scale is None: # when creating example caches. guidance_scale = 1.6 return inference(id_image, makeup_image, guidance_scale, size=512) if __name__ == "__main__": with gr.Blocks() as demo: gr.Interface( fn=send_to_model, inputs=[ gr.Image(type="pil", label="id_image", height=512, width=512), gr.Image(type="pil", label="makeup_image", height=512, width=512), gr.Slider(minimum=1.01, maximum=3, value=1.6, step=0.05, label="guidance_scale", info="1.05-1.15 is suggested for light makeup and 2 for heavy makeup."), ], outputs="image", allow_flagging="never", description="FACE: AI Makeup", ) demo.queue(max_size=10).launch()