gstaff commited on
Commit
872279f
·
1 Parent(s): 3698240

Add debugging for image generation

Browse files
Files changed (1) hide show
  1. app.py +22 -17
app.py CHANGED
@@ -15,6 +15,9 @@ from transformers import GPT2TokenizerFast
15
  # update requirements.txt with:
16
  # C:\Users\Grant\PycharmProjects\test_space\venv\Scripts\pip3.exe freeze > requirements.txt
17
 
 
 
 
18
  pretrained_weights = 'gpt2'
19
  tokenizer = GPT2TokenizerFast.from_pretrained(pretrained_weights)
20
 
@@ -47,6 +50,7 @@ model = MinDalle(
47
 
48
 
49
  def gen_image(prompt):
 
50
  images = model.generate_images(
51
  text=prompt,
52
  seed=-1,
@@ -57,28 +61,29 @@ def gen_image(prompt):
57
  supercondition_factor=16,
58
  is_verbose=False
59
  )
 
60
  images = images.to('cpu').numpy()
61
  images = images.astype(np.uint8)
62
  return Image.fromarray(images[0])
63
 
64
 
65
- gpu = False
66
- # init only once
67
- learner = load_learner('export.pkl',
68
- cpu=not gpu) # cpu=False uses GPU; make sure installed torch is GPU e.g. `pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116`
69
-
70
-
71
- def run_model(name):
72
- prompt = f"Name: {name}\r\n"
73
- prompt_ids = tokenizer.encode(prompt)
74
- if gpu:
75
- inp = tensor(prompt_ids)[None].cuda() # Use .cuda() for torch GPU
76
- else:
77
- inp = tensor(prompt_ids)[None]
78
- preds = learner.model.generate(inp, max_length=1024, num_beams=5, temperature=1.5, do_sample=True)
79
- result = tokenizer.decode(preds[0].cpu().numpy())
80
- result = result.split('###')[0].replace(r'\r\n', '\n')
81
- return result
82
 
83
 
84
  iface = gr.Interface(fn=gen_image, inputs="text", outputs="pil")
 
15
  # update requirements.txt with:
16
  # C:\Users\Grant\PycharmProjects\test_space\venv\Scripts\pip3.exe freeze > requirements.txt
17
 
18
+ # Huggingface Spaces have 16GB RAM and 8 CPU cores
19
+ # See https://huggingface.co/docs/hub/spaces-overview#hardware-resources
20
+
21
  pretrained_weights = 'gpt2'
22
  tokenizer = GPT2TokenizerFast.from_pretrained(pretrained_weights)
23
 
 
50
 
51
 
52
  def gen_image(prompt):
53
+ print(f'RUNNING gen_image with pronpt: {prompt}')
54
  images = model.generate_images(
55
  text=prompt,
56
  seed=-1,
 
61
  supercondition_factor=16,
62
  is_verbose=False
63
  )
64
+ print('COMPLETED GENERATION')
65
  images = images.to('cpu').numpy()
66
  images = images.astype(np.uint8)
67
  return Image.fromarray(images[0])
68
 
69
 
70
+ # gpu = False
71
+ # # init only once
72
+ # learner = load_learner('export.pkl',
73
+ # cpu=not gpu) # cpu=False uses GPU; make sure installed torch is GPU e.g. `pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116`
74
+ #
75
+ #
76
+ # def run_model(name):
77
+ # prompt = f"Name: {name}\r\n"
78
+ # prompt_ids = tokenizer.encode(prompt)
79
+ # if gpu:
80
+ # inp = tensor(prompt_ids)[None].cuda() # Use .cuda() for torch GPU
81
+ # else:
82
+ # inp = tensor(prompt_ids)[None]
83
+ # preds = learner.model.generate(inp, max_length=1024, num_beams=5, temperature=1.5, do_sample=True)
84
+ # result = tokenizer.decode(preds[0].cpu().numpy())
85
+ # result = result.split('###')[0].replace(r'\r\n', '\n')
86
+ # return result
87
 
88
 
89
  iface = gr.Interface(fn=gen_image, inputs="text", outputs="pil")