Spaces:
Build error
Build error
| # This script is modified from https://github.com/EricGuo5513/TM2T | |
| # Licensed under: https://github.com/EricGuo5513/TM2T/blob/main/LICENSE | |
| import torch.nn as nn | |
| class VQDecoderV3(nn.Module): | |
| def __init__(self, args): | |
| super(VQDecoderV3, self).__init__() | |
| n_up = args.vae_layer | |
| channels = [] | |
| for i in range(n_up - 1): | |
| channels.append(args.vae_length) | |
| channels.append(args.vae_length) | |
| channels.append(args.vae_test_dim) | |
| input_size = args.vae_length | |
| n_resblk = 2 | |
| assert len(channels) == n_up + 1 | |
| if input_size == channels[0]: | |
| layers = [] | |
| else: | |
| layers = [nn.Conv1d(input_size, channels[0], kernel_size=3, stride=1, padding=1)] | |
| for i in range(n_resblk): | |
| layers += [ResBlock(channels[0])] | |
| # channels = channels | |
| for i in range(n_up): | |
| layers += [ | |
| nn.Upsample(scale_factor=2, mode="nearest"), | |
| nn.Conv1d(channels[i], channels[i + 1], kernel_size=3, stride=1, padding=1), | |
| nn.LeakyReLU(0.2, inplace=True), | |
| ] | |
| layers += [nn.Conv1d(channels[-1], channels[-1], kernel_size=3, stride=1, padding=1)] | |
| self.main = nn.Sequential(*layers) | |
| # self.main.apply(init_weight) | |
| def forward(self, inputs): | |
| inputs = inputs.permute(0, 2, 1) | |
| outputs = self.main(inputs).permute(0, 2, 1) | |
| return outputs | |
| class ResBlock(nn.Module): | |
| def __init__(self, channel): | |
| super(ResBlock, self).__init__() | |
| self.model = nn.Sequential( | |
| nn.Conv1d(channel, channel, kernel_size=3, stride=1, padding=1), | |
| nn.LeakyReLU(0.2, inplace=True), | |
| nn.Conv1d(channel, channel, kernel_size=3, stride=1, padding=1), | |
| ) | |
| def forward(self, x): | |
| residual = x | |
| out = self.model(x) | |
| out += residual | |
| return out | |