Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,36 +1,82 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
|
|
|
| 3 |
import torchaudio
|
| 4 |
import numpy as np
|
| 5 |
from datasets import load_dataset
|
| 6 |
-
import torch.nn.functional as F
|
| 7 |
|
| 8 |
# ---------------------------
|
| 9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# ---------------------------
|
| 11 |
dataset = load_dataset("ccmusic-database/pianos", name="8_class")
|
| 12 |
label_names = dataset["train"].features["label"].names
|
|
|
|
| 13 |
|
| 14 |
# ---------------------------
|
| 15 |
-
#
|
| 16 |
# ---------------------------
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# ---------------------------
|
| 26 |
# Audio Preprocessing
|
| 27 |
# ---------------------------
|
| 28 |
-
|
| 29 |
-
TARGET_SR = 44100
|
| 30 |
-
N_FFT = 1024
|
| 31 |
-
HOP_LENGTH = 512
|
| 32 |
-
N_MELS = 64
|
| 33 |
-
|
| 34 |
mel_transform = torchaudio.transforms.MelSpectrogram(
|
| 35 |
sample_rate=TARGET_SR,
|
| 36 |
n_fft=N_FFT,
|
|
@@ -39,14 +85,14 @@ mel_transform = torchaudio.transforms.MelSpectrogram(
|
|
| 39 |
center=False # we will handle padding manually
|
| 40 |
)
|
| 41 |
|
| 42 |
-
def
|
| 43 |
"""
|
| 44 |
-
audio from gradio.Audio(type="numpy") is
|
| 45 |
-
|
| 46 |
"""
|
| 47 |
sr, data = audio
|
| 48 |
|
| 49 |
-
# Convert to
|
| 50 |
waveform = torch.tensor(data, dtype=torch.float32)
|
| 51 |
|
| 52 |
# If shape is (samples,), make it (1, samples)
|
|
@@ -57,7 +103,7 @@ def preprocess_audio(audio):
|
|
| 57 |
if waveform.ndim == 2 and waveform.shape[0] < waveform.shape[1]:
|
| 58 |
waveform = waveform.transpose(0, 1)
|
| 59 |
|
| 60 |
-
# Convert to mono if stereo
|
| 61 |
if waveform.shape[0] > 1:
|
| 62 |
waveform = waveform.mean(dim=0, keepdim=True)
|
| 63 |
|
|
@@ -65,43 +111,54 @@ def preprocess_audio(audio):
|
|
| 65 |
if sr != TARGET_SR:
|
| 66 |
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=TARGET_SR)
|
| 67 |
waveform = resampler(waveform)
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
if current_len < min_len:
|
| 74 |
-
pad_amount = min_len - current_len
|
| 75 |
-
# Pad at the end with zeros
|
| 76 |
waveform = F.pad(waveform, (0, pad_amount))
|
| 77 |
|
| 78 |
-
# Mel-spectrogram
|
| 79 |
-
mel = mel_transform(waveform)
|
| 80 |
mel_db = torchaudio.transforms.AmplitudeToDB()(mel)
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
# ---------------------------
|
| 84 |
-
# Main
|
| 85 |
# ---------------------------
|
| 86 |
def analyze_piano(audio):
|
| 87 |
if audio is None:
|
| 88 |
-
return "Please upload or record a piano audio clip (
|
| 89 |
|
| 90 |
try:
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
quality_score = fake_quality_score(mel)
|
| 96 |
|
| 97 |
output_text = (
|
| 98 |
f"Piano Type Prediction: {piano_type}\n"
|
| 99 |
-
f"Estimated Sound Quality Score: {
|
| 100 |
)
|
| 101 |
return output_text
|
| 102 |
|
| 103 |
except Exception as e:
|
| 104 |
-
# Show error in the UI instead of crashing the app
|
| 105 |
return f"An error occurred while processing the audio: {e}"
|
| 106 |
|
| 107 |
# ---------------------------
|
|
@@ -116,7 +173,7 @@ demo = gr.Interface(
|
|
| 116 |
),
|
| 117 |
outputs=gr.Textbox(label="AI Analysis Output"),
|
| 118 |
title="AI Piano Sound Analyzer 🎹",
|
| 119 |
-
description="Upload a short piano recording
|
| 120 |
)
|
| 121 |
|
| 122 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
import torchaudio
|
| 6 |
import numpy as np
|
| 7 |
from datasets import load_dataset
|
|
|
|
| 8 |
|
| 9 |
# ---------------------------
|
| 10 |
+
# Constants
|
| 11 |
+
# ---------------------------
|
| 12 |
+
TARGET_SR = 44100
|
| 13 |
+
N_FFT = 1024
|
| 14 |
+
HOP_LENGTH = 512
|
| 15 |
+
N_MELS = 64
|
| 16 |
+
|
| 17 |
+
# ---------------------------
|
| 18 |
+
# Load Dataset Metadata for Labels
|
| 19 |
# ---------------------------
|
| 20 |
dataset = load_dataset("ccmusic-database/pianos", name="8_class")
|
| 21 |
label_names = dataset["train"].features["label"].names
|
| 22 |
+
num_classes = len(label_names)
|
| 23 |
|
| 24 |
# ---------------------------
|
| 25 |
+
# Define the Same CNN Model as in Training
|
| 26 |
# ---------------------------
|
| 27 |
+
class PianoCNNMultiTask(nn.Module):
|
| 28 |
+
def __init__(self, num_classes):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.features = nn.Sequential(
|
| 31 |
+
nn.Conv2d(3, 16, kernel_size=3, padding=1),
|
| 32 |
+
nn.BatchNorm2d(16),
|
| 33 |
+
nn.ReLU(),
|
| 34 |
+
nn.MaxPool2d(2), # 128 -> 64
|
| 35 |
+
|
| 36 |
+
nn.Conv2d(16, 32, kernel_size=3, padding=1),
|
| 37 |
+
nn.BatchNorm2d(32),
|
| 38 |
+
nn.ReLU(),
|
| 39 |
+
nn.MaxPool2d(2), # 64 -> 32
|
| 40 |
+
|
| 41 |
+
nn.Conv2d(32, 64, kernel_size=3, padding=1),
|
| 42 |
+
nn.BatchNorm2d(64),
|
| 43 |
+
nn.ReLU(),
|
| 44 |
+
nn.MaxPool2d(2), # 32 -> 16
|
| 45 |
+
|
| 46 |
+
nn.Conv2d(64, 128, kernel_size=3, padding=1),
|
| 47 |
+
nn.BatchNorm2d(128),
|
| 48 |
+
nn.ReLU(),
|
| 49 |
+
nn.AdaptiveAvgPool2d((4, 4)) # 4x4 feature map
|
| 50 |
+
)
|
| 51 |
+
self.flatten = nn.Flatten()
|
| 52 |
+
self.fc_shared = nn.Linear(128 * 4 * 4, 256)
|
| 53 |
+
self.dropout = nn.Dropout(0.3)
|
| 54 |
+
|
| 55 |
+
# Classification head
|
| 56 |
+
self.fc_class = nn.Linear(256, num_classes)
|
| 57 |
+
# Regression head (quality score)
|
| 58 |
+
self.fc_reg = nn.Linear(256, 1)
|
| 59 |
+
|
| 60 |
+
def forward(self, x):
|
| 61 |
+
x = self.features(x)
|
| 62 |
+
x = self.flatten(x)
|
| 63 |
+
x = F.relu(self.fc_shared(x))
|
| 64 |
+
x = self.dropout(x)
|
| 65 |
+
class_logits = self.fc_class(x)
|
| 66 |
+
quality_pred = self.fc_reg(x).squeeze(1)
|
| 67 |
+
return class_logits, quality_pred
|
| 68 |
|
| 69 |
+
# ---------------------------
|
| 70 |
+
# Initialize and Load Trained Model (CPU)
|
| 71 |
+
# ---------------------------
|
| 72 |
+
model = PianoCNNMultiTask(num_classes=num_classes)
|
| 73 |
+
state_dict = torch.load("piano_cnn_multitask.pt", map_location=torch.device("cpu"))
|
| 74 |
+
model.load_state_dict(state_dict)
|
| 75 |
+
model.eval() # inference mode
|
| 76 |
|
| 77 |
# ---------------------------
|
| 78 |
# Audio Preprocessing
|
| 79 |
# ---------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
mel_transform = torchaudio.transforms.MelSpectrogram(
|
| 81 |
sample_rate=TARGET_SR,
|
| 82 |
n_fft=N_FFT,
|
|
|
|
| 85 |
center=False # we will handle padding manually
|
| 86 |
)
|
| 87 |
|
| 88 |
+
def preprocess_audio_to_mel_image(audio):
|
| 89 |
"""
|
| 90 |
+
audio from gradio.Audio(type="numpy") is (sample_rate, data)
|
| 91 |
+
Returns a 3x128x128 tensor ready for the CNN.
|
| 92 |
"""
|
| 93 |
sr, data = audio
|
| 94 |
|
| 95 |
+
# Convert to tensor
|
| 96 |
waveform = torch.tensor(data, dtype=torch.float32)
|
| 97 |
|
| 98 |
# If shape is (samples,), make it (1, samples)
|
|
|
|
| 103 |
if waveform.ndim == 2 and waveform.shape[0] < waveform.shape[1]:
|
| 104 |
waveform = waveform.transpose(0, 1)
|
| 105 |
|
| 106 |
+
# Convert to mono if stereo
|
| 107 |
if waveform.shape[0] > 1:
|
| 108 |
waveform = waveform.mean(dim=0, keepdim=True)
|
| 109 |
|
|
|
|
| 111 |
if sr != TARGET_SR:
|
| 112 |
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=TARGET_SR)
|
| 113 |
waveform = resampler(waveform)
|
| 114 |
+
|
| 115 |
+
# Ensure minimum length for STFT
|
| 116 |
+
min_len = N_FFT
|
| 117 |
+
if waveform.shape[-1] < min_len:
|
| 118 |
+
pad_amount = min_len - waveform.shape[-1]
|
|
|
|
|
|
|
|
|
|
| 119 |
waveform = F.pad(waveform, (0, pad_amount))
|
| 120 |
|
| 121 |
+
# Compute Mel-spectrogram and convert to dB
|
| 122 |
+
mel = mel_transform(waveform) # [1, n_mels, time]
|
| 123 |
mel_db = torchaudio.transforms.AmplitudeToDB()(mel)
|
| 124 |
+
|
| 125 |
+
# Normalize to 0–1
|
| 126 |
+
mel_db = (mel_db - mel_db.min()) / (mel_db.max() - mel_db.min() + 1e-6)
|
| 127 |
+
|
| 128 |
+
# Resize to 128x128 and make 3 channels
|
| 129 |
+
mel_db = mel_db.unsqueeze(0) # [1, 1, H, W]
|
| 130 |
+
mel_resized = F.interpolate(mel_db, size=(128, 128), mode="bilinear", align_corners=False)
|
| 131 |
+
mel_rgb = mel_resized.repeat(1, 3, 1, 1) # [1, 3, 128, 128]
|
| 132 |
+
|
| 133 |
+
return mel_rgb.squeeze(0) # [3, 128, 128]
|
| 134 |
|
| 135 |
# ---------------------------
|
| 136 |
+
# Main Inference Function
|
| 137 |
# ---------------------------
|
| 138 |
def analyze_piano(audio):
|
| 139 |
if audio is None:
|
| 140 |
+
return "Please upload or record a piano audio clip (around 1–3 seconds)."
|
| 141 |
|
| 142 |
try:
|
| 143 |
+
# Preprocess input
|
| 144 |
+
mel_img = preprocess_audio_to_mel_image(audio) # [3,128,128]
|
| 145 |
+
mel_batch = mel_img.unsqueeze(0) # [1,3,128,128]
|
| 146 |
+
|
| 147 |
+
with torch.no_grad():
|
| 148 |
+
logits, q_pred = model(mel_batch)
|
| 149 |
+
class_idx = torch.argmax(logits, dim=1).item()
|
| 150 |
+
quality_score = float(q_pred.item())
|
| 151 |
|
| 152 |
+
piano_type = label_names[class_idx]
|
| 153 |
+
quality_score_rounded = round(quality_score, 2)
|
|
|
|
| 154 |
|
| 155 |
output_text = (
|
| 156 |
f"Piano Type Prediction: {piano_type}\n"
|
| 157 |
+
f"Estimated Sound Quality Score: {quality_score_rounded} / 10"
|
| 158 |
)
|
| 159 |
return output_text
|
| 160 |
|
| 161 |
except Exception as e:
|
|
|
|
| 162 |
return f"An error occurred while processing the audio: {e}"
|
| 163 |
|
| 164 |
# ---------------------------
|
|
|
|
| 173 |
),
|
| 174 |
outputs=gr.Textbox(label="AI Analysis Output"),
|
| 175 |
title="AI Piano Sound Analyzer 🎹",
|
| 176 |
+
description="Upload a short piano recording to get a predicted piano type and estimated sound-quality score from the trained CNN model."
|
| 177 |
)
|
| 178 |
|
| 179 |
if __name__ == "__main__":
|