Spaces:
Runtime error
Runtime error
Upload modeling.py
Browse filesAdded modeling file
- modeling.py +545 -0
modeling.py
ADDED
|
@@ -0,0 +1,545 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import torchvision.models as models
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
from torch import Tensor
|
| 8 |
+
|
| 9 |
+
class PositionalEncoding(nn.Module):
|
| 10 |
+
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000):
|
| 11 |
+
super().__init__()
|
| 12 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 13 |
+
self.max_len = max_len
|
| 14 |
+
self.d_model = d_model
|
| 15 |
+
position = torch.arange(max_len).unsqueeze(1)
|
| 16 |
+
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
| 17 |
+
pe = torch.zeros(1, max_len, d_model)
|
| 18 |
+
pe[0, :, 0::2] = torch.sin(position * div_term)
|
| 19 |
+
pe[0, :, 1::2] = torch.cos(position * div_term)
|
| 20 |
+
self.register_buffer("pe", pe)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def forward(self) -> Tensor:
|
| 24 |
+
x = self.pe[0, : self.max_len]
|
| 25 |
+
return self.dropout(x).unsqueeze(0)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class ResNetFeatureExtractor(nn.Module):
|
| 29 |
+
def __init__(self, hidden_dim = 512):
|
| 30 |
+
super().__init__()
|
| 31 |
+
|
| 32 |
+
# Making the resnet 50 model, which was used in the docformer for the purpose of visual feature extraction
|
| 33 |
+
|
| 34 |
+
resnet50 = models.resnet50(pretrained=False)
|
| 35 |
+
modules = list(resnet50.children())[:-2]
|
| 36 |
+
self.resnet50 = nn.Sequential(*modules)
|
| 37 |
+
|
| 38 |
+
# Applying convolution and linear layer
|
| 39 |
+
|
| 40 |
+
self.conv1 = nn.Conv2d(2048, 768, 1)
|
| 41 |
+
self.relu1 = F.relu
|
| 42 |
+
self.linear1 = nn.Linear(192, hidden_dim)
|
| 43 |
+
|
| 44 |
+
def forward(self, x):
|
| 45 |
+
x = self.resnet50(x)
|
| 46 |
+
x = self.conv1(x)
|
| 47 |
+
x = self.relu1(x)
|
| 48 |
+
x = rearrange(x, "b e w h -> b e (w h)") # b -> batch, e -> embedding dim, w -> width, h -> height
|
| 49 |
+
x = self.linear1(x)
|
| 50 |
+
x = rearrange(x, "b e s -> b s e") # b -> batch, e -> embedding dim, s -> sequence length
|
| 51 |
+
return x
|
| 52 |
+
|
| 53 |
+
class DocFormerEmbeddings(nn.Module):
|
| 54 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
| 55 |
+
|
| 56 |
+
def __init__(self, config):
|
| 57 |
+
super(DocFormerEmbeddings, self).__init__()
|
| 58 |
+
|
| 59 |
+
self.config = config
|
| 60 |
+
|
| 61 |
+
self.position_embeddings_v = PositionalEncoding(
|
| 62 |
+
d_model=config["hidden_size"],
|
| 63 |
+
dropout=0.1,
|
| 64 |
+
max_len=config["max_position_embeddings"],
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
self.x_topleft_position_embeddings_v = nn.Embedding(config["max_2d_position_embeddings"], config["coordinate_size"])
|
| 68 |
+
self.x_bottomright_position_embeddings_v = nn.Embedding(config["max_2d_position_embeddings"], config["coordinate_size"])
|
| 69 |
+
self.w_position_embeddings_v = nn.Embedding(config["max_2d_position_embeddings"], config["shape_size"])
|
| 70 |
+
self.x_topleft_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 71 |
+
self.x_bottomleft_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 72 |
+
self.x_topright_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 73 |
+
self.x_bottomright_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 74 |
+
self.x_centroid_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 75 |
+
|
| 76 |
+
self.y_topleft_position_embeddings_v = nn.Embedding(config["max_2d_position_embeddings"], config["coordinate_size"])
|
| 77 |
+
self.y_bottomright_position_embeddings_v = nn.Embedding(config["max_2d_position_embeddings"], config["coordinate_size"])
|
| 78 |
+
self.h_position_embeddings_v = nn.Embedding(config["max_2d_position_embeddings"], config["shape_size"])
|
| 79 |
+
self.y_topleft_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 80 |
+
self.y_bottomleft_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 81 |
+
self.y_topright_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 82 |
+
self.y_bottomright_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 83 |
+
self.y_centroid_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 84 |
+
|
| 85 |
+
self.position_embeddings_t = PositionalEncoding(
|
| 86 |
+
d_model=config["hidden_size"],
|
| 87 |
+
dropout=0.1,
|
| 88 |
+
max_len=config["max_position_embeddings"],
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
self.x_topleft_position_embeddings_t = nn.Embedding(config["max_2d_position_embeddings"], config["coordinate_size"])
|
| 92 |
+
self.x_bottomright_position_embeddings_t = nn.Embedding(config["max_2d_position_embeddings"], config["coordinate_size"])
|
| 93 |
+
self.w_position_embeddings_t = nn.Embedding(config["max_2d_position_embeddings"], config["shape_size"])
|
| 94 |
+
self.x_topleft_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"]+1, config["shape_size"])
|
| 95 |
+
self.x_bottomleft_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"]+1, config["shape_size"])
|
| 96 |
+
self.x_topright_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 97 |
+
self.x_bottomright_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 98 |
+
self.x_centroid_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 99 |
+
|
| 100 |
+
self.y_topleft_position_embeddings_t = nn.Embedding(config["max_2d_position_embeddings"], config["coordinate_size"])
|
| 101 |
+
self.y_bottomright_position_embeddings_t = nn.Embedding(config["max_2d_position_embeddings"], config["coordinate_size"])
|
| 102 |
+
self.h_position_embeddings_t = nn.Embedding(config["max_2d_position_embeddings"], config["shape_size"])
|
| 103 |
+
self.y_topleft_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 104 |
+
self.y_bottomleft_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 105 |
+
self.y_topright_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 106 |
+
self.y_bottomright_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 107 |
+
self.y_centroid_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
| 108 |
+
|
| 109 |
+
self.LayerNorm = nn.LayerNorm(config["hidden_size"], eps=config["layer_norm_eps"])
|
| 110 |
+
self.dropout = nn.Dropout(config["hidden_dropout_prob"])
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def forward(self, x_feature, y_feature):
|
| 115 |
+
|
| 116 |
+
"""
|
| 117 |
+
Arguments:
|
| 118 |
+
x_features of shape, (batch size, seq_len, 8)
|
| 119 |
+
y_features of shape, (batch size, seq_len, 8)
|
| 120 |
+
Outputs:
|
| 121 |
+
(V-bar-s, T-bar-s) of shape (batch size, 512,768),(batch size, 512,768)
|
| 122 |
+
What are the features:
|
| 123 |
+
0 -> top left x/y
|
| 124 |
+
1 -> bottom right x/y
|
| 125 |
+
2 -> width/height
|
| 126 |
+
3 -> diff top left x/y
|
| 127 |
+
4 -> diff bottom left x/y
|
| 128 |
+
5 -> diff top right x/y
|
| 129 |
+
6 -> diff bottom right x/y
|
| 130 |
+
7 -> centroids diff x/y
|
| 131 |
+
"""
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
batch, seq_len = x_feature.shape[:-1]
|
| 135 |
+
hidden_size = self.config["hidden_size"]
|
| 136 |
+
num_feat = x_feature.shape[-1]
|
| 137 |
+
sub_dim = hidden_size // num_feat
|
| 138 |
+
|
| 139 |
+
# Clamping and adding a bias for handling negative values
|
| 140 |
+
x_feature[:,:,3:] = torch.clamp(x_feature[:,:,3:],-self.config["max_2d_position_embeddings"],self.config["max_2d_position_embeddings"])
|
| 141 |
+
x_feature[:,:,3:]+= self.config["max_2d_position_embeddings"]
|
| 142 |
+
|
| 143 |
+
y_feature[:,:,3:] = torch.clamp(y_feature[:,:,3:],-self.config["max_2d_position_embeddings"],self.config["max_2d_position_embeddings"])
|
| 144 |
+
y_feature[:,:,3:]+= self.config["max_2d_position_embeddings"]
|
| 145 |
+
|
| 146 |
+
x_topleft_position_embeddings_v = self.x_topleft_position_embeddings_v(x_feature[:,:,0])
|
| 147 |
+
x_bottomright_position_embeddings_v = self.x_bottomright_position_embeddings_v(x_feature[:,:,1])
|
| 148 |
+
w_position_embeddings_v = self.w_position_embeddings_v(x_feature[:,:,2])
|
| 149 |
+
x_topleft_distance_to_prev_embeddings_v = self.x_topleft_distance_to_prev_embeddings_v(x_feature[:,:,3])
|
| 150 |
+
x_bottomleft_distance_to_prev_embeddings_v = self.x_bottomleft_distance_to_prev_embeddings_v(x_feature[:,:,4])
|
| 151 |
+
x_topright_distance_to_prev_embeddings_v = self.x_topright_distance_to_prev_embeddings_v(x_feature[:,:,5])
|
| 152 |
+
x_bottomright_distance_to_prev_embeddings_v = self.x_bottomright_distance_to_prev_embeddings_v(x_feature[:,:,6])
|
| 153 |
+
x_centroid_distance_to_prev_embeddings_v = self.x_centroid_distance_to_prev_embeddings_v(x_feature[:,:,7])
|
| 154 |
+
|
| 155 |
+
x_calculated_embedding_v = torch.cat(
|
| 156 |
+
[
|
| 157 |
+
x_topleft_position_embeddings_v,
|
| 158 |
+
x_bottomright_position_embeddings_v,
|
| 159 |
+
w_position_embeddings_v,
|
| 160 |
+
x_topleft_distance_to_prev_embeddings_v,
|
| 161 |
+
x_bottomleft_distance_to_prev_embeddings_v,
|
| 162 |
+
x_topright_distance_to_prev_embeddings_v,
|
| 163 |
+
x_bottomright_distance_to_prev_embeddings_v ,
|
| 164 |
+
x_centroid_distance_to_prev_embeddings_v
|
| 165 |
+
],
|
| 166 |
+
dim = -1
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
y_topleft_position_embeddings_v = self.y_topleft_position_embeddings_v(y_feature[:,:,0])
|
| 170 |
+
y_bottomright_position_embeddings_v = self.y_bottomright_position_embeddings_v(y_feature[:,:,1])
|
| 171 |
+
h_position_embeddings_v = self.h_position_embeddings_v(y_feature[:,:,2])
|
| 172 |
+
y_topleft_distance_to_prev_embeddings_v = self.y_topleft_distance_to_prev_embeddings_v(y_feature[:,:,3])
|
| 173 |
+
y_bottomleft_distance_to_prev_embeddings_v = self.y_bottomleft_distance_to_prev_embeddings_v(y_feature[:,:,4])
|
| 174 |
+
y_topright_distance_to_prev_embeddings_v = self.y_topright_distance_to_prev_embeddings_v(y_feature[:,:,5])
|
| 175 |
+
y_bottomright_distance_to_prev_embeddings_v = self.y_bottomright_distance_to_prev_embeddings_v(y_feature[:,:,6])
|
| 176 |
+
y_centroid_distance_to_prev_embeddings_v = self.y_centroid_distance_to_prev_embeddings_v(y_feature[:,:,7])
|
| 177 |
+
|
| 178 |
+
x_calculated_embedding_v = torch.cat(
|
| 179 |
+
[
|
| 180 |
+
x_topleft_position_embeddings_v,
|
| 181 |
+
x_bottomright_position_embeddings_v,
|
| 182 |
+
w_position_embeddings_v,
|
| 183 |
+
x_topleft_distance_to_prev_embeddings_v,
|
| 184 |
+
x_bottomleft_distance_to_prev_embeddings_v,
|
| 185 |
+
x_topright_distance_to_prev_embeddings_v,
|
| 186 |
+
x_bottomright_distance_to_prev_embeddings_v ,
|
| 187 |
+
x_centroid_distance_to_prev_embeddings_v
|
| 188 |
+
],
|
| 189 |
+
dim = -1
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
y_calculated_embedding_v = torch.cat(
|
| 193 |
+
[
|
| 194 |
+
y_topleft_position_embeddings_v,
|
| 195 |
+
y_bottomright_position_embeddings_v,
|
| 196 |
+
h_position_embeddings_v,
|
| 197 |
+
y_topleft_distance_to_prev_embeddings_v,
|
| 198 |
+
y_bottomleft_distance_to_prev_embeddings_v,
|
| 199 |
+
y_topright_distance_to_prev_embeddings_v,
|
| 200 |
+
y_bottomright_distance_to_prev_embeddings_v ,
|
| 201 |
+
y_centroid_distance_to_prev_embeddings_v
|
| 202 |
+
],
|
| 203 |
+
dim = -1
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
v_bar_s = x_calculated_embedding_v + y_calculated_embedding_v + self.position_embeddings_v()
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
x_topleft_position_embeddings_t = self.x_topleft_position_embeddings_t(x_feature[:,:,0])
|
| 211 |
+
x_bottomright_position_embeddings_t = self.x_bottomright_position_embeddings_t(x_feature[:,:,1])
|
| 212 |
+
w_position_embeddings_t = self.w_position_embeddings_t(x_feature[:,:,2])
|
| 213 |
+
x_topleft_distance_to_prev_embeddings_t = self.x_topleft_distance_to_prev_embeddings_t(x_feature[:,:,3])
|
| 214 |
+
x_bottomleft_distance_to_prev_embeddings_t = self.x_bottomleft_distance_to_prev_embeddings_t(x_feature[:,:,4])
|
| 215 |
+
x_topright_distance_to_prev_embeddings_t = self.x_topright_distance_to_prev_embeddings_t(x_feature[:,:,5])
|
| 216 |
+
x_bottomright_distance_to_prev_embeddings_t = self.x_bottomright_distance_to_prev_embeddings_t(x_feature[:,:,6])
|
| 217 |
+
x_centroid_distance_to_prev_embeddings_t = self.x_centroid_distance_to_prev_embeddings_t(x_feature[:,:,7])
|
| 218 |
+
|
| 219 |
+
x_calculated_embedding_t = torch.cat(
|
| 220 |
+
[
|
| 221 |
+
x_topleft_position_embeddings_t,
|
| 222 |
+
x_bottomright_position_embeddings_t,
|
| 223 |
+
w_position_embeddings_t,
|
| 224 |
+
x_topleft_distance_to_prev_embeddings_t,
|
| 225 |
+
x_bottomleft_distance_to_prev_embeddings_t,
|
| 226 |
+
x_topright_distance_to_prev_embeddings_t,
|
| 227 |
+
x_bottomright_distance_to_prev_embeddings_t ,
|
| 228 |
+
x_centroid_distance_to_prev_embeddings_t
|
| 229 |
+
],
|
| 230 |
+
dim = -1
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
y_topleft_position_embeddings_t = self.y_topleft_position_embeddings_t(y_feature[:,:,0])
|
| 234 |
+
y_bottomright_position_embeddings_t = self.y_bottomright_position_embeddings_t(y_feature[:,:,1])
|
| 235 |
+
h_position_embeddings_t = self.h_position_embeddings_t(y_feature[:,:,2])
|
| 236 |
+
y_topleft_distance_to_prev_embeddings_t = self.y_topleft_distance_to_prev_embeddings_t(y_feature[:,:,3])
|
| 237 |
+
y_bottomleft_distance_to_prev_embeddings_t = self.y_bottomleft_distance_to_prev_embeddings_t(y_feature[:,:,4])
|
| 238 |
+
y_topright_distance_to_prev_embeddings_t = self.y_topright_distance_to_prev_embeddings_t(y_feature[:,:,5])
|
| 239 |
+
y_bottomright_distance_to_prev_embeddings_t = self.y_bottomright_distance_to_prev_embeddings_t(y_feature[:,:,6])
|
| 240 |
+
y_centroid_distance_to_prev_embeddings_t = self.y_centroid_distance_to_prev_embeddings_t(y_feature[:,:,7])
|
| 241 |
+
|
| 242 |
+
x_calculated_embedding_t = torch.cat(
|
| 243 |
+
[
|
| 244 |
+
x_topleft_position_embeddings_t,
|
| 245 |
+
x_bottomright_position_embeddings_t,
|
| 246 |
+
w_position_embeddings_t,
|
| 247 |
+
x_topleft_distance_to_prev_embeddings_t,
|
| 248 |
+
x_bottomleft_distance_to_prev_embeddings_t,
|
| 249 |
+
x_topright_distance_to_prev_embeddings_t,
|
| 250 |
+
x_bottomright_distance_to_prev_embeddings_t ,
|
| 251 |
+
x_centroid_distance_to_prev_embeddings_t
|
| 252 |
+
],
|
| 253 |
+
dim = -1
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
y_calculated_embedding_t = torch.cat(
|
| 257 |
+
[
|
| 258 |
+
y_topleft_position_embeddings_t,
|
| 259 |
+
y_bottomright_position_embeddings_t,
|
| 260 |
+
h_position_embeddings_t,
|
| 261 |
+
y_topleft_distance_to_prev_embeddings_t,
|
| 262 |
+
y_bottomleft_distance_to_prev_embeddings_t,
|
| 263 |
+
y_topright_distance_to_prev_embeddings_t,
|
| 264 |
+
y_bottomright_distance_to_prev_embeddings_t ,
|
| 265 |
+
y_centroid_distance_to_prev_embeddings_t
|
| 266 |
+
],
|
| 267 |
+
dim = -1
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
t_bar_s = x_calculated_embedding_t + y_calculated_embedding_t + self.position_embeddings_t()
|
| 271 |
+
|
| 272 |
+
return v_bar_s, t_bar_s
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
# fmt: off
|
| 277 |
+
class PreNorm(nn.Module):
|
| 278 |
+
def __init__(self, dim, fn):
|
| 279 |
+
# Fig 1: http://proceedings.mlr.press/v119/xiong20b/xiong20b.pdf
|
| 280 |
+
super().__init__()
|
| 281 |
+
self.norm = nn.LayerNorm(dim)
|
| 282 |
+
self.fn = fn
|
| 283 |
+
|
| 284 |
+
def forward(self, x, **kwargs):
|
| 285 |
+
return self.fn(self.norm(x), **kwargs)
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
class PreNormAttn(nn.Module):
|
| 289 |
+
def __init__(self, dim, fn):
|
| 290 |
+
# Fig 1: http://proceedings.mlr.press/v119/xiong20b/xiong20b.pdf
|
| 291 |
+
super().__init__()
|
| 292 |
+
|
| 293 |
+
self.norm_t_bar = nn.LayerNorm(dim)
|
| 294 |
+
self.norm_v_bar = nn.LayerNorm(dim)
|
| 295 |
+
self.norm_t_bar_s = nn.LayerNorm(dim)
|
| 296 |
+
self.norm_v_bar_s = nn.LayerNorm(dim)
|
| 297 |
+
self.fn = fn
|
| 298 |
+
|
| 299 |
+
def forward(self, t_bar, v_bar, t_bar_s, v_bar_s, **kwargs):
|
| 300 |
+
return self.fn(self.norm_t_bar(t_bar),
|
| 301 |
+
self.norm_v_bar(v_bar),
|
| 302 |
+
self.norm_t_bar_s(t_bar_s),
|
| 303 |
+
self.norm_v_bar_s(v_bar_s), **kwargs)
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
class FeedForward(nn.Module):
|
| 307 |
+
def __init__(self, dim, hidden_dim, dropout=0.):
|
| 308 |
+
super().__init__()
|
| 309 |
+
self.net = nn.Sequential(
|
| 310 |
+
nn.Linear(dim, hidden_dim),
|
| 311 |
+
nn.GELU(),
|
| 312 |
+
nn.Dropout(dropout),
|
| 313 |
+
nn.Linear(hidden_dim, dim),
|
| 314 |
+
nn.Dropout(dropout)
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
def forward(self, x):
|
| 318 |
+
return self.net(x)
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
class RelativePosition(nn.Module):
|
| 322 |
+
|
| 323 |
+
def __init__(self, num_units, max_relative_position, max_seq_length):
|
| 324 |
+
super().__init__()
|
| 325 |
+
self.num_units = num_units
|
| 326 |
+
self.max_relative_position = max_relative_position
|
| 327 |
+
self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units))
|
| 328 |
+
self.max_length = max_seq_length
|
| 329 |
+
range_vec_q = torch.arange(max_seq_length)
|
| 330 |
+
range_vec_k = torch.arange(max_seq_length)
|
| 331 |
+
distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
|
| 332 |
+
distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position)
|
| 333 |
+
final_mat = distance_mat_clipped + self.max_relative_position
|
| 334 |
+
self.final_mat = torch.LongTensor(final_mat)
|
| 335 |
+
nn.init.xavier_uniform_(self.embeddings_table)
|
| 336 |
+
|
| 337 |
+
def forward(self, length_q, length_k):
|
| 338 |
+
embeddings = self.embeddings_table[self.final_mat[:length_q, :length_k]]
|
| 339 |
+
return embeddings
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
class MultiModalAttentionLayer(nn.Module):
|
| 343 |
+
def __init__(self, embed_dim, n_heads, max_relative_position, max_seq_length, dropout):
|
| 344 |
+
super().__init__()
|
| 345 |
+
assert embed_dim % n_heads == 0
|
| 346 |
+
|
| 347 |
+
self.embed_dim = embed_dim
|
| 348 |
+
self.n_heads = n_heads
|
| 349 |
+
self.head_dim = embed_dim // n_heads
|
| 350 |
+
|
| 351 |
+
self.relative_positions_text = RelativePosition(self.head_dim, max_relative_position, max_seq_length)
|
| 352 |
+
self.relative_positions_img = RelativePosition(self.head_dim, max_relative_position, max_seq_length)
|
| 353 |
+
|
| 354 |
+
# text qkv embeddings
|
| 355 |
+
self.fc_k_text = nn.Linear(embed_dim, embed_dim)
|
| 356 |
+
self.fc_q_text = nn.Linear(embed_dim, embed_dim)
|
| 357 |
+
self.fc_v_text = nn.Linear(embed_dim, embed_dim)
|
| 358 |
+
|
| 359 |
+
# image qkv embeddings
|
| 360 |
+
self.fc_k_img = nn.Linear(embed_dim, embed_dim)
|
| 361 |
+
self.fc_q_img = nn.Linear(embed_dim, embed_dim)
|
| 362 |
+
self.fc_v_img = nn.Linear(embed_dim, embed_dim)
|
| 363 |
+
|
| 364 |
+
# spatial qk embeddings (shared for visual and text)
|
| 365 |
+
self.fc_k_spatial = nn.Linear(embed_dim, embed_dim)
|
| 366 |
+
self.fc_q_spatial = nn.Linear(embed_dim, embed_dim)
|
| 367 |
+
|
| 368 |
+
self.dropout = nn.Dropout(dropout)
|
| 369 |
+
|
| 370 |
+
self.to_out = nn.Sequential(
|
| 371 |
+
nn.Linear(embed_dim, embed_dim),
|
| 372 |
+
nn.Dropout(dropout)
|
| 373 |
+
)
|
| 374 |
+
self.scale = embed_dim**0.5
|
| 375 |
+
|
| 376 |
+
def forward(self, text_feat, img_feat, text_spatial_feat, img_spatial_feat):
|
| 377 |
+
text_feat = text_feat
|
| 378 |
+
img_feat = img_feat
|
| 379 |
+
text_spatial_feat = text_spatial_feat
|
| 380 |
+
img_spatial_feat = img_spatial_feat
|
| 381 |
+
seq_length = text_feat.shape[1]
|
| 382 |
+
|
| 383 |
+
# self attention of text
|
| 384 |
+
# b -> batch, t -> time steps (l -> length has same meaning), head -> # of heads, k -> head dim.
|
| 385 |
+
key_text_nh = rearrange(self.fc_k_text(text_feat), 'b t (head k) -> head b t k', head=self.n_heads)
|
| 386 |
+
query_text_nh = rearrange(self.fc_q_text(text_feat), 'b l (head k) -> head b l k', head=self.n_heads)
|
| 387 |
+
value_text_nh = rearrange(self.fc_v_text(text_feat), 'b t (head k) -> head b t k', head=self.n_heads)
|
| 388 |
+
dots_text = torch.einsum('hblk,hbtk->hblt', query_text_nh, key_text_nh)
|
| 389 |
+
dots_text = dots_text/ self.scale
|
| 390 |
+
|
| 391 |
+
# 1D relative positions (query, key)
|
| 392 |
+
rel_pos_embed_text = self.relative_positions_text(seq_length, seq_length)
|
| 393 |
+
rel_pos_key_text = torch.einsum('bhrd,lrd->bhlr', key_text_nh, rel_pos_embed_text)
|
| 394 |
+
rel_pos_query_text = torch.einsum('bhld,lrd->bhlr', query_text_nh, rel_pos_embed_text)
|
| 395 |
+
|
| 396 |
+
# shared spatial <-> text hidden features
|
| 397 |
+
key_spatial_text = self.fc_k_spatial(text_spatial_feat)
|
| 398 |
+
query_spatial_text = self.fc_q_spatial(text_spatial_feat)
|
| 399 |
+
key_spatial_text_nh = rearrange(key_spatial_text, 'b t (head k) -> head b t k', head=self.n_heads)
|
| 400 |
+
query_spatial_text_nh = rearrange(query_spatial_text, 'b l (head k) -> head b l k', head=self.n_heads)
|
| 401 |
+
dots_text_spatial = torch.einsum('hblk,hbtk->hblt', query_spatial_text_nh, key_spatial_text_nh)
|
| 402 |
+
dots_text_spatial = dots_text_spatial/ self.scale
|
| 403 |
+
|
| 404 |
+
# Line 38 of pseudo-code
|
| 405 |
+
text_attn_scores = dots_text + rel_pos_key_text + rel_pos_query_text + dots_text_spatial
|
| 406 |
+
|
| 407 |
+
# self-attention of image
|
| 408 |
+
key_img_nh = rearrange(self.fc_k_img(img_feat), 'b t (head k) -> head b t k', head=self.n_heads)
|
| 409 |
+
query_img_nh = rearrange(self.fc_q_img(img_feat), 'b l (head k) -> head b l k', head=self.n_heads)
|
| 410 |
+
value_img_nh = rearrange(self.fc_v_img(img_feat), 'b t (head k) -> head b t k', head=self.n_heads)
|
| 411 |
+
dots_img = torch.einsum('hblk,hbtk->hblt', query_img_nh, key_img_nh)
|
| 412 |
+
dots_img = dots_img/ self.scale
|
| 413 |
+
|
| 414 |
+
# 1D relative positions (query, key)
|
| 415 |
+
rel_pos_embed_img = self.relative_positions_img(seq_length, seq_length)
|
| 416 |
+
rel_pos_key_img = torch.einsum('bhrd,lrd->bhlr', key_img_nh, rel_pos_embed_text)
|
| 417 |
+
rel_pos_query_img = torch.einsum('bhld,lrd->bhlr', query_img_nh, rel_pos_embed_text)
|
| 418 |
+
|
| 419 |
+
# shared spatial <-> image features
|
| 420 |
+
key_spatial_img = self.fc_k_spatial(img_spatial_feat)
|
| 421 |
+
query_spatial_img = self.fc_q_spatial(img_spatial_feat)
|
| 422 |
+
key_spatial_img_nh = rearrange(key_spatial_img, 'b t (head k) -> head b t k', head=self.n_heads)
|
| 423 |
+
query_spatial_img_nh = rearrange(query_spatial_img, 'b l (head k) -> head b l k', head=self.n_heads)
|
| 424 |
+
dots_img_spatial = torch.einsum('hblk,hbtk->hblt', query_spatial_img_nh, key_spatial_img_nh)
|
| 425 |
+
dots_img_spatial = dots_img_spatial/ self.scale
|
| 426 |
+
|
| 427 |
+
# Line 59 of pseudo-code
|
| 428 |
+
img_attn_scores = dots_img + rel_pos_key_img + rel_pos_query_img + dots_img_spatial
|
| 429 |
+
|
| 430 |
+
text_attn_probs = self.dropout(torch.softmax(text_attn_scores, dim=-1))
|
| 431 |
+
img_attn_probs = self.dropout(torch.softmax(img_attn_scores, dim=-1))
|
| 432 |
+
|
| 433 |
+
text_context = torch.einsum('hblt,hbtv->hblv', text_attn_probs, value_text_nh)
|
| 434 |
+
img_context = torch.einsum('hblt,hbtv->hblv', img_attn_probs, value_img_nh)
|
| 435 |
+
|
| 436 |
+
context = text_context + img_context
|
| 437 |
+
|
| 438 |
+
embeddings = rearrange(context, 'head b t d -> b t (head d)')
|
| 439 |
+
return self.to_out(embeddings)
|
| 440 |
+
|
| 441 |
+
class DocFormerEncoder(nn.Module):
|
| 442 |
+
def __init__(self, config):
|
| 443 |
+
super().__init__()
|
| 444 |
+
self.config = config
|
| 445 |
+
self.layers = nn.ModuleList([])
|
| 446 |
+
for _ in range(config['num_hidden_layers']):
|
| 447 |
+
encoder_block = nn.ModuleList([
|
| 448 |
+
PreNormAttn(config['hidden_size'],
|
| 449 |
+
MultiModalAttentionLayer(config['hidden_size'],
|
| 450 |
+
config['num_attention_heads'],
|
| 451 |
+
config['max_relative_positions'],
|
| 452 |
+
config['max_position_embeddings'],
|
| 453 |
+
config['hidden_dropout_prob'],
|
| 454 |
+
)
|
| 455 |
+
),
|
| 456 |
+
PreNorm(config['hidden_size'],
|
| 457 |
+
FeedForward(config['hidden_size'],
|
| 458 |
+
config['hidden_size'] * config['intermediate_ff_size_factor'],
|
| 459 |
+
dropout=config['hidden_dropout_prob']))
|
| 460 |
+
])
|
| 461 |
+
self.layers.append(encoder_block)
|
| 462 |
+
|
| 463 |
+
def forward(
|
| 464 |
+
self,
|
| 465 |
+
text_feat, # text feat or output from last encoder block
|
| 466 |
+
img_feat,
|
| 467 |
+
text_spatial_feat,
|
| 468 |
+
img_spatial_feat,
|
| 469 |
+
):
|
| 470 |
+
# Fig 1 encoder part (skip conn for both attn & FF): https://arxiv.org/abs/1706.03762
|
| 471 |
+
# TODO: ensure 1st skip conn (var "skip") in such a multimodal setting makes sense (most likely does)
|
| 472 |
+
for attn, ff in self.layers:
|
| 473 |
+
skip = text_feat + img_feat + text_spatial_feat + img_spatial_feat
|
| 474 |
+
x = attn(text_feat, img_feat, text_spatial_feat, img_spatial_feat) + skip
|
| 475 |
+
x = ff(x) + x
|
| 476 |
+
text_feat = x
|
| 477 |
+
return x
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
class LanguageFeatureExtractor(nn.Module):
|
| 481 |
+
def __init__(self):
|
| 482 |
+
super().__init__()
|
| 483 |
+
from transformers import LayoutLMForTokenClassification
|
| 484 |
+
layoutlm_dummy = LayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=1)
|
| 485 |
+
self.embedding_vector = nn.Embedding.from_pretrained(layoutlm_dummy.layoutlm.embeddings.word_embeddings.weight)
|
| 486 |
+
|
| 487 |
+
def forward(self, x):
|
| 488 |
+
return self.embedding_vector(x)
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
class ExtractFeatures(nn.Module):
|
| 493 |
+
|
| 494 |
+
'''
|
| 495 |
+
Inputs: dictionary
|
| 496 |
+
Output: v_bar, t_bar, v_bar_s, t_bar_s
|
| 497 |
+
'''
|
| 498 |
+
|
| 499 |
+
def __init__(self, config):
|
| 500 |
+
super().__init__()
|
| 501 |
+
self.visual_feature = ResNetFeatureExtractor(hidden_dim = config['max_position_embeddings'])
|
| 502 |
+
self.language_feature = LanguageFeatureExtractor()
|
| 503 |
+
self.spatial_feature = DocFormerEmbeddings(config)
|
| 504 |
+
|
| 505 |
+
def forward(self, encoding):
|
| 506 |
+
|
| 507 |
+
image = encoding['resized_scaled_img']
|
| 508 |
+
|
| 509 |
+
language = encoding['input_ids']
|
| 510 |
+
x_feature = encoding['x_features']
|
| 511 |
+
y_feature = encoding['y_features']
|
| 512 |
+
|
| 513 |
+
v_bar = self.visual_feature(image)
|
| 514 |
+
t_bar = self.language_feature(language)
|
| 515 |
+
|
| 516 |
+
v_bar_s, t_bar_s = self.spatial_feature(x_feature, y_feature)
|
| 517 |
+
|
| 518 |
+
return v_bar, t_bar, v_bar_s, t_bar_s
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
class DocFormer(nn.Module):
|
| 523 |
+
|
| 524 |
+
'''
|
| 525 |
+
Easy boiler plate, because this model will just take as an input, the dictionary which is obtained from create_features function
|
| 526 |
+
'''
|
| 527 |
+
def __init__(self, config):
|
| 528 |
+
super().__init__()
|
| 529 |
+
self.config = config
|
| 530 |
+
self.extract_feature = ExtractFeatures(config)
|
| 531 |
+
self.encoder = DocFormerEncoder(config)
|
| 532 |
+
self.dropout = nn.Dropout(config['hidden_dropout_prob'])
|
| 533 |
+
|
| 534 |
+
def forward(self, x ,use_tdi=False):
|
| 535 |
+
v_bar, t_bar, v_bar_s, t_bar_s = self.extract_feature(x,use_tdi)
|
| 536 |
+
features = {'v_bar': v_bar, 't_bar': t_bar, 'v_bar_s': v_bar_s, 't_bar_s': t_bar_s}
|
| 537 |
+
output = self.encoder(features['t_bar'], features['v_bar'], features['t_bar_s'], features['v_bar_s'])
|
| 538 |
+
output = self.dropout(output)
|
| 539 |
+
return output
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
|