Leaderboards / app.py
alielfilali01's picture
Update app.py
0963663 verified
import os
import json
import math
import numpy as np
import pandas as pd
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download
OWNER = "inceptionai"
ARAGEN_REQUESTS_REPO_ID = f"{OWNER}/aragen-requests-dataset"
HINDIGEN_REQUESTS_REPO_ID = f"{OWNER}/hindigen-requests-dataset"
IFEVAL_REQUESTS_REPO_ID = f"{OWNER}/arabicifeval-requests-dataset"
HEADER = """
<center>
<br></br>
<h1>Multilingual Leaderboards 🌍</h1>
<h2>Generative Evaluation for Global South</h2>
<br></br>
</center>
"""
ABOUT_SECTION = """
## About
In our `12-24` release, we introduced the **AraGen Benchmark**, along with the **3C3H** evaluation measure (aka the 3C3H Score). You can find more details about AraGen and 3C3H [here](https://huggingface.co/blog/leaderboard-3c3h-aragen). The first versions of the benchmark, **AraGen-12-24** and **AraGen-03-25 (v2)**, are publicly available in the [`inceptionai/AraGen`](https://huggingface.co/datasets/inceptionai/AraGen) dataset. The current AraGen leaderboard in this Space is powered by **AraGen-v3**.
Building on that foundation, we extend our evaluation beyond Arabic, introducing **HindiGen**, a generative benchmark for Hindi that will follow the same release philosophy as AraGen. The current **HindiGen-v1** powers the HindiGen leaderboards here; a future **HindiGen-v2** release will be publicly shared along with the v1 dataset.
In this release, we present three main leaderboards:
**AraGen-v3:**
- The AraGen Benchmark is designed to evaluate and compare the performance of Chat/Instruct Arabic Large Language Models on a suite of generative tasks that are culturally relevant to the Arab region, history, politics, cuisine, and more. By leveraging **3C3H** as an evaluation metric—which assesses a model's output across six dimensions: Correctness, Completeness, Conciseness, Helpfulness, Honesty, and Harmlessness—the leaderboard offers a comprehensive and holistic evaluation of a model’s chat capabilities and its ability to generate human-like and ethically responsible content.
**HindiGen-v1:**
- The HindiGen Benchmark evaluates Chat/Instruct LLMs on Hindi generative tasks such as question answering, grammar, and safety. It follows the same 3C3H evaluation methodology and bootstrapped confidence intervals, enabling statistically grounded comparisons between models on culturally and linguistically rich Hindi content.
**Instruction Following (IFEval – Arabic & English):**
- We have established a robust leaderboard that benchmarks models on Arabic and English instruction following, offering an open and comparative performance landscape for the research community. Concurrently, we released the first publicly available Arabic [dataset](https://huggingface.co/datasets/inceptionai/Arabic_IFEval) aimed at evaluating LLMs' ability to follow instructions. The Arabic IFEval samples are meticulously curated to capture the language’s unique nuances—such as diacritization and distinctive phonetic features—often overlooked in generic datasets. Our dedicated linguistic team generated original samples and adapted selections from the IFEval English dataset, ensuring that the material resonates with Arabic cultural contexts and meets the highest standards of authenticity and quality.
### Why Focus on Chat Models?
Our evaluations are conducted in a generative mode, meaning that we expect models to produce complete, context-rich responses rather than simply predicting the next token as base models do. This approach not only yields results that are more explainable and nuanced compared to logit-based measurements, but it also captures elements like creativity, coherence, and ethical considerations—providing deeper insights into overall model performance.
### Contact
For inquiries or assistance, please join the conversation on our [Discussions Tab](https://huggingface.co/spaces/inceptionai/Leaderboards/discussions) or reach out via [email](mailto:[email protected]).
"""
BOTTOM_LOGO = """<img src="https://huggingface.co/spaces/inceptionai/Arabic-Leaderboards/resolve/main/assets/pictures/03-25/arabic-leaderboards-colab-march-preview-free-3.png" style="width:50%;display:block;margin-left:auto;margin-right:auto;border-radius:15px;">"""
CITATION_BUTTON_TEXT = """
@misc{leaderboards,
author = {El Filali, Ali and Albarri, Sarah and Kamboj, Samta and Sengupta, Neha and Nakov, Preslav and Abouelseoud, Arwa},
title = {Multilingual Leaderboards: Generative Evaluation for Global South},
year = {2025},
publisher = {Inception},
howpublished = "url{https://huggingface.co/spaces/inceptionai/Leaderboards}"
}
"""
CITATION_BUTTON_LABEL = """
Copy the following snippet to cite the results from all Arabic Leaderboards in this Space.
"""
def extract_score_value(entry):
"""
Helper to extract (value, lower, upper) from both old v2 format (float)
and new v3/v1 formats (dict with "value"/"lower"/"upper").
All values are returned in [0, 1] space; caller can convert to percentages.
We use the "value" field as the point estimate.
"""
if entry is None:
return (math.nan, math.nan, math.nan)
# Old format: just a float
if isinstance(entry, (int, float)):
v = float(entry)
return (v, math.nan, math.nan)
# New format: dict with "value", "lower", "upper"
if isinstance(entry, dict):
v = float(entry.get("value", math.nan))
lower = entry.get("lower", math.nan)
upper = entry.get("upper", math.nan)
lower = float(lower) if isinstance(lower, (int, float)) else math.nan
upper = float(upper) if isinstance(upper, (int, float)) else math.nan
return (v, lower, upper)
return (math.nan, math.nan, math.nan)
def compute_leaderboard_3c3h(df_3c3h_base: pd.DataFrame) -> pd.DataFrame:
"""
Build the 3C3H leaderboard with:
- Rank (by 3C3H Score)
- Rank Spread (based on 3C3H Score CI)
- 95% CI (±) for 3C3H Score (only)
- Model Size Filter
All scores are in percentage space.
"""
df = df_3c3h_base.copy()
# Model size filter helper
max_model_size_value = 1000
df["Model Size Filter"] = df["Model Size"].replace(np.inf, max_model_size_value)
# Sort & rank by 3C3H Score (point estimate)
if "3C3H Score" in df.columns:
df = df.sort_values(by="3C3H Score", ascending=False)
df = df.reset_index(drop=True)
df.insert(0, "Rank", range(1, len(df) + 1))
# Rank Spread based on 3C3H Score CI
main_col = "3C3H Score"
lower_col = "3C3H Score Lower"
upper_col = "3C3H Score Upper"
# Effective lower/upper: if not present, fall back to point estimate
if lower_col in df.columns:
lower_eff = df[lower_col].copy()
else:
lower_eff = df[main_col].copy()
if upper_col in df.columns:
upper_eff = df[upper_col].copy()
else:
upper_eff = df[main_col].copy()
# order of base scenario: all models at their point estimates (value-based)
sort_desc = df.sort_values(by=main_col, ascending=False)
score_order = sort_desc[main_col].values # descending
def rank_position(x, order):
"""
Given a value x and a descending array 'order',
return the rank index where x would land
if all others stayed as in 'order'.
Rank = 1 + number of scores strictly greater than x.
"""
if np.isnan(x):
return math.nan
# Ignore NaNs in the score order
valid = order[~np.isnan(order)]
if valid.size == 0:
return math.nan
# 'valid' is descending; count how many scores are strictly greater than x
num_greater = np.sum(valid > x)
rank = num_greater + 1
# Clamp rank to [1, len(valid)] for numerical safety
if rank < 1:
rank = 1
elif rank > len(valid):
rank = len(valid)
return int(rank)
best_ranks = []
worst_ranks = []
for low, high in zip(lower_eff.values, upper_eff.values):
best = rank_position(high, score_order) # optimistic: use upper bound
worst = rank_position(low, score_order) # pessimistic: use lower bound
best_ranks.append(best)
worst_ranks.append(worst)
spread = []
for b, w in zip(best_ranks, worst_ranks):
if math.isnan(b) or math.isnan(w):
spread.append("-")
else:
spread.append(f"{int(b)} <--> {int(w)}")
df.insert(1, "Rank Spread", spread)
# 95% CI (±) for 3C3H Score only (in percentage space)
if lower_col in df.columns and upper_col in df.columns:
ci = (df[upper_col] - df[lower_col]) / 2.0
df["95% CI (±)"] = ci.round(4)
else:
df["95% CI (±)"] = np.nan
# Round score columns
score_columns_3c3h = [
"3C3H Score",
"Correctness",
"Completeness",
"Conciseness",
"Helpfulness",
"Honesty",
"Harmlessness",
]
for col in score_columns_3c3h:
if col in df.columns:
df[col] = df[col].round(4)
df["95% CI (±)"] = df["95% CI (±)"].round(4)
return df
def load_results(benchmark="aragen"):
"""
Loads results for the given benchmark.
benchmark:
- "aragen" -> uses aragen_v3_results.json (or v2 fallback)
- "hindigen" -> uses hindigen_v1_results.json
Supports:
- old v2 format (simple floats)
- new v3/v1 format (dict with value/lower/upper)
Returns:
df_3c3h : 3C3H leaderboard dataframe (with Rank, Rank Spread, 95% CI (±))
df_tasks : tasks leaderboard dataframe
task_columns: list of task score columns
"""
current_dir = os.path.dirname(os.path.abspath(__file__))
if benchmark == "hindigen":
results_file = os.path.join(current_dir, "assets", "results", "hindigen_v1_results.json")
else:
v3_file = os.path.join(current_dir, "assets", "results", "aragen_v3_results.json")
v2_file = os.path.join(current_dir, "assets", "results", "aragen_v2_results.json")
if os.path.exists(v3_file):
results_file = v3_file
else:
results_file = v2_file
with open(results_file, "r", encoding="utf-8") as f:
data = json.load(f)
# Filter out entries that only contain "_last_sync_timestamp"
filtered_data = []
for entry in data:
if len(entry.keys()) == 1 and "_last_sync_timestamp" in entry:
continue
filtered_data.append(entry)
data = filtered_data
data_3c3h = []
data_tasks = []
for model_data in data:
meta = model_data.get("Meta", {})
model_name = meta.get("Model Name", "UNK")
revision = meta.get("Revision", "UNK")
precision = meta.get("Precision", "UNK")
license_ = meta.get("License", "UNK")
params = meta.get("Params", "UNK")
# Parse model size
try:
model_size_numeric = float(params)
except Exception:
model_size_numeric = np.inf
# Find the key that holds the scores (e.g. "claude-3-7-sonnet-20250219 Scores", "claude-3.5-sonnet Scores")
scores_key = None
for k in model_data.keys():
if k.endswith("Scores"):
scores_key = k
break
scores_data = model_data.get(scores_key, {}) if scores_key else {}
scores_3c3h = scores_data.get("3C3H Scores", {})
scores_tasks = scores_data.get("Tasks Scores", {})
# --- 3C3H entry ---
entry3 = {
"Model Name": model_name,
"Revision": revision,
"License": license_,
"Precision": precision,
"Model Size": model_size_numeric,
}
for metric_name, metric_entry in scores_3c3h.items():
v, lower, upper = extract_score_value(metric_entry)
# Point estimate (percentage)
entry3[metric_name] = v * 100 if not math.isnan(v) else np.nan
# Only keep lower/upper for 3C3H Score (for CI & Rank Spread)
if metric_name == "3C3H Score":
entry3["3C3H Score Lower"] = (
lower * 100 if not math.isnan(lower) else np.nan
)
entry3["3C3H Score Upper"] = (
upper * 100 if not math.isnan(upper) else np.nan
)
data_3c3h.append(entry3)
# --- Tasks entry ---
entryt = {
"Model Name": model_name,
"Revision": revision,
"License": license_,
"Precision": precision,
"Model Size": model_size_numeric,
}
for task_name, task_entry in scores_tasks.items():
v, _, _ = extract_score_value(task_entry)
entryt[task_name] = v * 100 if not math.isnan(v) else np.nan
data_tasks.append(entryt)
df_3c3h_base = pd.DataFrame(data_3c3h)
df_tasks_base = pd.DataFrame(data_tasks)
# Build 3C3H leaderboard (rank, rank spread, CI, size filter)
df_3c3h = compute_leaderboard_3c3h(df_3c3h_base)
# Build tasks leaderboard (no weighted average, no rank spread, no CI)
if df_tasks_base.empty:
df_tasks = df_tasks_base.copy()
task_columns = []
else:
meta_cols_tasks = [
"Model Name",
"Revision",
"License",
"Precision",
"Model Size",
]
task_columns = [
col
for col in df_tasks_base.columns
if col not in meta_cols_tasks
]
df_tasks = df_tasks_base.copy()
# Round task scores
if task_columns:
df_tasks[task_columns] = df_tasks[task_columns].round(4)
# Model size filter
max_model_size_value = 1000
df_tasks["Model Size Filter"] = df_tasks["Model Size"].replace(
np.inf, max_model_size_value
)
# Sort & rank: based on the first task (typically Question Answering (QA))
if task_columns:
first_task = task_columns[0]
df_tasks = df_tasks.sort_values(by=first_task, ascending=False)
else:
df_tasks = df_tasks.sort_values(by="Model Name", ascending=True)
df_tasks = df_tasks.reset_index(drop=True)
df_tasks.insert(0, "Rank", range(1, len(df_tasks) + 1))
return df_3c3h, df_tasks, task_columns
def load_if_data():
"""
Loads the instruction-following data from ifeval_results.jsonl
and returns a dataframe with relevant columns,
converting decimal values to percentage format.
"""
current_dir = os.path.dirname(os.path.abspath(__file__))
results_file = os.path.join(current_dir, "assets", "results", "ifeval_results.jsonl")
data = []
with open(results_file, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
data.append(json.loads(line))
df = pd.DataFrame(data)
# Convert numeric columns
numeric_cols = ["En Prompt-lvl", "En Instruction-lvl", "Ar Prompt-lvl", "Ar Instruction-lvl"]
for col in numeric_cols:
df[col] = pd.to_numeric(df[col], errors="coerce")
# Compute average accuracy for En and Ar
df["Average Accuracy (En)"] = (df["En Prompt-lvl"] + df["En Instruction-lvl"]) / 2
df["Average Accuracy (Ar)"] = (df["Ar Prompt-lvl"] + df["Ar Instruction-lvl"]) / 2
# Convert them to percentage format (e.g., 0.871 -> 87.1)
for col in numeric_cols:
df[col] = (df[col] * 100).round(1)
df["Average Accuracy (En)"] = (df["Average Accuracy (En)"] * 100).round(1)
df["Average Accuracy (Ar)"] = (df["Average Accuracy (Ar)"] * 100).round(1)
# Handle size as numeric
def parse_size(x):
try:
return float(x)
except:
return np.inf
df["Model Size"] = df["Size (B)"].apply(parse_size)
# Add a filter column for size
max_model_size_value = 1000
df["Model Size Filter"] = df["Model Size"].replace(np.inf, max_model_size_value)
# Sort by "Average Accuracy (Ar)" as an example
df = df.sort_values(by="Average Accuracy (Ar)", ascending=False)
df = df.reset_index(drop=True)
df.insert(0, "Rank", range(1, len(df) + 1))
return df
def submit_model(model_name, revision, precision, params, license, modality, leaderboards_selected):
"""
Submits a model to one or more leaderboards:
- AraGen -> inceptionai/aragen-requests-dataset
- HindiGen -> inceptionai/hindigen-requests-dataset
- IFEval -> inceptionai/arabicifeval-requests-dataset
User must choose at least one leaderboard.
"""
if not leaderboards_selected:
return "**Error:** You must choose at least one leaderboard (AraGen, HindiGen, and/or IFEval)."
# Normalize precision
if precision == "Missing":
precision_norm = None
else:
precision_norm = precision.strip().lower() if precision else None
repo_map = {
"AraGen": ARAGEN_REQUESTS_REPO_ID,
"HindiGen": HINDIGEN_REQUESTS_REPO_ID,
"IFEval": IFEVAL_REQUESTS_REPO_ID,
}
# Map leaderboards that use the 3C3H JSON result files (for dedup vs results)
results_benchmark_map = {
"AraGen": "aragen",
"HindiGen": "hindigen",
}
api = HfApi()
# Validate model exists on HuggingFace Hub once
try:
_ = api.model_info(model_name)
except Exception:
return f"**Error: Could not find model '{model_name}' on HuggingFace Hub. Please ensure the model name is correct and the model is public.**"
org_model = model_name.split("/")
if len(org_model) != 2:
return "**Please enter the full model name including the organization or username, e.g., 'inceptionai/jais-family-30b-8k'**"
org, model_id = org_model
hf_api_token = os.environ.get("HF_API_TOKEN", None)
# Dedup & upload per leaderboard
success_targets = []
skipped_targets = []
errors = []
for leaderboard in leaderboards_selected:
repo_id = repo_map.get(leaderboard)
if repo_id is None:
errors.append(f"- Unknown leaderboard: {leaderboard}")
continue
# Deduplicate against existing results (only for AraGen/HindiGen)
already_evaluated = False
if leaderboard in results_benchmark_map:
df_3c3h_lb, _, _ = load_results(results_benchmark_map[leaderboard])
if not df_3c3h_lb.empty:
existing_models_results = df_3c3h_lb[["Model Name", "Revision", "Precision"]]
model_exists_in_results = (
(existing_models_results["Model Name"] == model_name)
& (existing_models_results["Revision"] == revision)
& (existing_models_results["Precision"] == (precision_norm if precision_norm is not None else existing_models_results["Precision"]))
).any()
if model_exists_in_results:
skipped_targets.append(
f"- **{leaderboard}**: Model already appears in the leaderboard results."
)
already_evaluated = True
# Deduplicate against pending/finished requests in this repo
def load_req(status_folder):
return load_requests(repo_id, status_folder)
df_pending = load_req("pending")
df_finished = load_req("finished")
if not already_evaluated:
if not df_pending.empty:
existing_models_pending = df_pending[["model_name", "revision", "precision"]]
model_exists_in_pending = (
(existing_models_pending["model_name"] == model_name)
& (existing_models_pending["revision"] == revision)
& (existing_models_pending["precision"] == precision_norm)
).any()
if model_exists_in_pending:
skipped_targets.append(
f"- **{leaderboard}**: Model is already in pending evaluations."
)
already_evaluated = True
if not already_evaluated:
if not df_finished.empty:
existing_models_finished = df_finished[["model_name", "revision", "precision"]]
model_exists_in_finished = (
(existing_models_finished["model_name"] == model_name)
& (existing_models_finished["revision"] == revision)
& (existing_models_finished["precision"] == precision_norm)
).any()
if model_exists_in_finished:
skipped_targets.append(
f"- **{leaderboard}**: Model has already been evaluated (finished)."
)
already_evaluated = True
if already_evaluated:
continue
# Prepare submission JSON
status = "PENDING"
submission = {
"model_name": model_name,
"license": license,
"revision": revision,
"precision": precision_norm,
"params": params,
"status": status,
"modality": modality,
"leaderboard": leaderboard,
}
submission_json = json.dumps(submission, indent=2)
precision_str = precision_norm if precision_norm else "Missing"
file_path_in_repo = f"pending/{org}/{model_id}_eval_request_{revision}_{precision_str}.json"
try:
api.upload_file(
path_or_fileobj=submission_json.encode("utf-8"),
path_in_repo=file_path_in_repo,
repo_id=repo_id,
repo_type="dataset",
token=hf_api_token,
)
success_targets.append(leaderboard)
except Exception as e:
errors.append(f"- **{leaderboard}**: Error while submitting – {str(e)}")
# Build user-facing message
messages = []
if success_targets:
messages.append(
f"✅ Model **'{model_name}'** has been submitted for evaluation to: "
+ ", ".join(f"**{lb}**" for lb in success_targets)
+ "."
)
if skipped_targets:
messages.append("⚠️ Skipped submissions:\n" + "\n".join(skipped_targets))
if errors:
messages.append("❌ Errors:\n" + "\n".join(errors))
if not messages:
return "**No submissions were made.** Please check if the model is already pending or evaluated."
return "\n\n".join(messages)
def load_requests(repo_id, status_folder):
"""
Loads request JSON files from a given dataset repo and status folder:
status_folder in {"pending", "finished", "failed"}
"""
api = HfApi()
requests_data = []
hf_api_token = os.environ.get("HF_API_TOKEN", None)
try:
files_info = api.list_repo_files(
repo_id=repo_id,
repo_type="dataset",
token=hf_api_token,
)
except Exception as e:
print(f"Error accessing dataset repository {repo_id}: {e}")
return pd.DataFrame()
files_in_folder = [
f for f in files_info if f.startswith(f"{status_folder}/") and f.endswith(".json")
]
for file_path in files_in_folder:
try:
local_file_path = hf_hub_download(
repo_id=repo_id,
filename=file_path,
repo_type="dataset",
token=hf_api_token,
)
with open(local_file_path, "r") as f:
request = json.load(f)
requests_data.append(request)
except Exception as e:
print(f"Error loading file {file_path}: {e}")
continue
df = pd.DataFrame(requests_data)
return df
# ---------- FILTER HELPERS (AraGen) ----------
def filter_df_3c3h(
search_query,
selected_cols,
precision_filters,
license_filters,
min_size,
max_size,
):
# AraGen 3C3H
df_3c3h, _, _ = load_results("aragen")
df_ = df_3c3h.copy()
# Sanity check on size range
if min_size > max_size:
min_size, max_size = max_size, min_size
# Text search
if search_query:
df_ = df_[df_["Model Name"].str.contains(search_query, case=False, na=False)]
# Precision filtering
if precision_filters:
include_missing = "Missing" in precision_filters
selected_precisions = [p for p in precision_filters if p != "Missing"]
if include_missing:
df_ = df_[
(df_["Precision"].isin(selected_precisions))
| (df_["Precision"] == "UNK")
| (df_["Precision"].isna())
]
else:
df_ = df_[df_["Precision"].isin(selected_precisions)]
# License filtering
if license_filters:
include_missing = "Missing" in license_filters
selected_licenses = [l for l in license_filters if l != "Missing"]
if include_missing:
df_ = df_[
(df_["License"].isin(selected_licenses))
| (df_["License"] == "UNK")
| (df_["License"].isna())
]
else:
df_ = df_[df_["License"].isin(selected_licenses)]
# Model size filter
df_ = df_[
(df_["Model Size Filter"] >= min_size) & (df_["Model Size Filter"] <= max_size)
]
# Keep global Rank / Rank Spread; just reset the index
df_ = df_.reset_index(drop=True)
# Column ordering
fixed_column_order = [
"Rank",
"Rank Spread",
"Model Name",
"3C3H Score",
"95% CI (±)",
"Correctness",
"Completeness",
"Conciseness",
"Helpfulness",
"Honesty",
"Harmlessness",
"Revision",
"License",
"Precision",
"Model Size",
]
selected_cols = [
col
for col in fixed_column_order
if col in selected_cols and col in df_.columns
]
return df_[selected_cols]
def filter_df_tasks(
search_query,
selected_cols,
precision_filters,
license_filters,
min_size,
max_size,
task_columns,
):
# AraGen tasks
_, df_tasks, _ = load_results("aragen")
df_ = df_tasks.copy()
if min_size > max_size:
min_size, max_size = max_size, min_size
if search_query:
df_ = df_[df_["Model Name"].str.contains(search_query, case=False, na=False)]
if precision_filters:
include_missing = "Missing" in precision_filters
selected_precisions = [p for p in precision_filters if p != "Missing"]
if include_missing:
df_ = df_[
(df_["Precision"].isin(selected_precisions))
| (df_["Precision"] == "UNK")
| (df_["Precision"].isna())
]
else:
df_ = df_[df_["Precision"].isin(selected_precisions)]
if license_filters:
include_missing = "Missing" in license_filters
selected_licenses = [l for l in license_filters if l != "Missing"]
if include_missing:
df_ = df_[
(df_["License"].isin(selected_licenses))
| (df_["License"] == "UNK")
| (df_["License"].isna())
]
else:
df_ = df_[df_["License"].isin(selected_licenses)]
df_ = df_[
(df_["Model Size Filter"] >= min_size) & (df_["Model Size Filter"] <= max_size)
]
# Re-rank within filtered subset using first task as sort key
if "Rank" in df_.columns:
df_ = df_.drop(columns=["Rank"])
if task_columns:
first_task = task_columns[0]
if first_task in df_.columns:
df_ = df_.sort_values(by=first_task, ascending=False)
else:
df_ = df_.sort_values(by="Model Name", ascending=True)
else:
df_ = df_.sort_values(by="Model Name", ascending=True)
df_ = df_.reset_index(drop=True)
df_.insert(0, "Rank", range(1, len(df_) + 1))
fixed_column_order = [
"Rank",
"Model Name",
"Question Answering (QA)",
"Orthographic and Grammatical Analysis",
"Safety",
"Reasoning",
"Revision",
"License",
"Precision",
"Model Size",
]
selected_cols = [
col for col in fixed_column_order if col in selected_cols and col in df_.columns
]
return df_[selected_cols]
# ---------- FILTER HELPERS (HindiGen) ----------
def filter_df_3c3h_hindigen(
search_query,
selected_cols,
precision_filters,
license_filters,
min_size,
max_size,
):
df_3c3h_hi, _, _ = load_results("hindigen")
df_ = df_3c3h_hi.copy()
if min_size > max_size:
min_size, max_size = max_size, min_size
if search_query:
df_ = df_[df_["Model Name"].str.contains(search_query, case=False, na=False)]
if precision_filters:
include_missing = "Missing" in precision_filters
selected_precisions = [p for p in precision_filters if p != "Missing"]
if include_missing:
df_ = df_[
(df_["Precision"].isin(selected_precisions))
| (df_["Precision"] == "UNK")
| (df_["Precision"].isna())
]
else:
df_ = df_[df_["Precision"].isin(selected_precisions)]
if license_filters:
include_missing = "Missing" in license_filters
selected_licenses = [l for l in license_filters if l != "Missing"]
if include_missing:
df_ = df_[
(df_["License"].isin(selected_licenses))
| (df_["License"] == "UNK")
| (df_["License"].isna())
]
else:
df_ = df_[df_["License"].isin(selected_licenses)]
df_ = df_[
(df_["Model Size Filter"] >= min_size) & (df_["Model Size Filter"] <= max_size)
]
df_ = df_.reset_index(drop=True)
fixed_column_order = [
"Rank",
"Rank Spread",
"Model Name",
"3C3H Score",
"95% CI (±)",
"Correctness",
"Completeness",
"Conciseness",
"Helpfulness",
"Honesty",
"Harmlessness",
"Revision",
"License",
"Precision",
"Model Size",
]
selected_cols = [
col
for col in fixed_column_order
if col in selected_cols and col in df_.columns
]
return df_[selected_cols]
def filter_df_tasks_hindigen(
search_query,
selected_cols,
precision_filters,
license_filters,
min_size,
max_size,
task_columns,
):
_, df_tasks_hi, _ = load_results("hindigen")
df_ = df_tasks_hi.copy()
if min_size > max_size:
min_size, max_size = max_size, min_size
if search_query:
df_ = df_[df_["Model Name"].str.contains(search_query, case=False, na=False)]
if precision_filters:
include_missing = "Missing" in precision_filters
selected_precisions = [p for p in precision_filters if p != "Missing"]
if include_missing:
df_ = df_[
(df_["Precision"].isin(selected_precisions))
| (df_["Precision"] == "UNK")
| (df_["Precision"].isna())
]
else:
df_ = df_[df_["Precision"].isin(selected_precisions)]
if license_filters:
include_missing = "Missing" in license_filters
selected_licenses = [l for l in license_filters if l != "Missing"]
if include_missing:
df_ = df_[
(df_["License"].isin(selected_licenses))
| (df_["License"] == "UNK")
| (df_["License"].isna())
]
else:
df_ = df_[df_["License"].isin(selected_licenses)]
df_ = df_[
(df_["Model Size Filter"] >= min_size) & (df_["Model Size Filter"] <= max_size)
]
if "Rank" in df_.columns:
df_ = df_.drop(columns=["Rank"])
if task_columns:
first_task = task_columns[0]
if first_task in df_.columns:
df_ = df_.sort_values(by=first_task, ascending=False)
else:
df_ = df_.sort_values(by="Model Name", ascending=True)
else:
df_ = df_.sort_values(by="Model Name", ascending=True)
df_ = df_.reset_index(drop=True)
df_.insert(0, "Rank", range(1, len(df_) + 1))
fixed_column_order = [
"Rank",
"Model Name",
"Question Answering (QA)",
"Grammar",
"Safety",
"Revision",
"License",
"Precision",
"Model Size",
]
selected_cols = [
col for col in fixed_column_order if col in selected_cols and col in df_.columns
]
return df_[selected_cols]
def filter_if_df(search_query, selected_cols, family_filters, min_size, max_size):
"""
Filters the instruction-following dataframe based on various criteria.
We have removed 'Filter by Type' and 'Filter by Creator'.
"""
df_ = load_if_data().copy()
if min_size > max_size:
min_size, max_size = max_size, min_size
# Search by model name
if search_query:
df_ = df_[df_["Model Name"].str.contains(search_query, case=False, na=False)]
# Filter by Family only (Creator and Type filters removed)
if family_filters:
df_ = df_[df_["Family"].isin(family_filters)]
# Filter by Model Size
df_ = df_[
(df_["Model Size Filter"] >= min_size) & (df_["Model Size Filter"] <= max_size)
]
# Re-rank within the filtered subset
if "Rank" in df_.columns:
df_ = df_.drop(columns=["Rank"])
df_ = df_.reset_index(drop=True)
df_.insert(0, "Rank", range(1, len(df_) + 1))
fixed_column_order = [
"Rank",
"Model Name",
"Average Accuracy (Ar)",
"Ar Prompt-lvl",
"Ar Instruction-lvl",
"Average Accuracy (En)",
"En Prompt-lvl",
"En Instruction-lvl",
"Type",
"Creator",
"Family",
"Size (B)",
"Base Model",
"Context Window",
"Lang.",
]
selected_cols = [
col for col in fixed_column_order if col in selected_cols and col in df_.columns
]
return df_[selected_cols]
def main():
# Load AraGen, HindiGen, and IFEval data
df_3c3h_ar, df_tasks_ar, task_columns_ar = load_results("aragen")
df_3c3h_hi, df_tasks_hi, task_columns_hi = load_results("hindigen")
df_if = load_if_data() # Instruction Following DF
# ---------- AraGen options ----------
precision_options_3c3h = sorted(df_3c3h_ar["Precision"].dropna().unique().tolist())
precision_options_3c3h = [p for p in precision_options_3c3h if p != "UNK"]
precision_options_3c3h.append("Missing")
license_options_3c3h = sorted(df_3c3h_ar["License"].dropna().unique().tolist())
license_options_3c3h = [l for l in license_options_3c3h if l != "UNK"]
license_options_3c3h.append("Missing")
precision_options_tasks = sorted(df_tasks_ar["Precision"].dropna().unique().tolist())
precision_options_tasks = [p for p in precision_options_tasks if p != "UNK"]
precision_options_tasks.append("Missing")
license_options_tasks = sorted(df_tasks_ar["License"].dropna().unique().tolist())
license_options_tasks = [l for l in license_options_tasks if l != "UNK"]
license_options_tasks.append("Missing")
min_model_size_3c3h = int(df_3c3h_ar["Model Size Filter"].min())
max_model_size_3c3h = int(df_3c3h_ar["Model Size Filter"].max())
min_model_size_tasks = int(df_tasks_ar["Model Size Filter"].min())
max_model_size_tasks = int(df_tasks_ar["Model Size Filter"].max())
column_choices_3c3h = [
col
for col in df_3c3h_ar.columns.tolist()
if col
not in [
"Model Size Filter",
"3C3H Score Lower",
"3C3H Score Upper",
]
]
column_choices_tasks = [
col
for col in df_tasks_ar.columns.tolist()
if col != "Model Size Filter"
]
# ---------- HindiGen options ----------
precision_options_3c3h_hi = sorted(df_3c3h_hi["Precision"].dropna().unique().tolist())
precision_options_3c3h_hi = [p for p in precision_options_3c3h_hi if p != "UNK"]
precision_options_3c3h_hi.append("Missing")
license_options_3c3h_hi = sorted(df_3c3h_hi["License"].dropna().unique().tolist())
license_options_3c3h_hi = [l for l in license_options_3c3h_hi if l != "UNK"]
license_options_3c3h_hi.append("Missing")
precision_options_tasks_hi = sorted(df_tasks_hi["Precision"].dropna().unique().tolist())
precision_options_tasks_hi = [p for p in precision_options_tasks_hi if p != "UNK"]
precision_options_tasks_hi.append("Missing")
license_options_tasks_hi = sorted(df_tasks_hi["License"].dropna().unique().tolist())
license_options_tasks_hi = [l for l in license_options_tasks_hi if l != "UNK"]
license_options_tasks_hi.append("Missing")
min_model_size_3c3h_hi = int(df_3c3h_hi["Model Size Filter"].min())
max_model_size_3c3h_hi = int(df_3c3h_hi["Model Size Filter"].max())
min_model_size_tasks_hi = int(df_tasks_hi["Model Size Filter"].min())
max_model_size_tasks_hi = int(df_tasks_hi["Model Size Filter"].max())
column_choices_3c3h_hi = [
col
for col in df_3c3h_hi.columns.tolist()
if col
not in [
"Model Size Filter",
"3C3H Score Lower",
"3C3H Score Upper",
]
]
column_choices_tasks_hi = [
col
for col in df_tasks_hi.columns.tolist()
if col != "Model Size Filter"
]
# ---------- IFEval options ----------
family_options_if = sorted(df_if["Family"].dropna().unique().tolist())
min_model_size_if = int(df_if["Model Size Filter"].min())
max_model_size_if = int(df_if["Model Size Filter"].max())
all_if_columns = [
"Rank",
"Model Name",
"Average Accuracy (Ar)",
"Ar Prompt-lvl",
"Ar Instruction-lvl",
"Average Accuracy (En)",
"En Prompt-lvl",
"En Instruction-lvl",
"Type",
"Creator",
"Family",
"Size (B)",
"Base Model",
"Context Window",
"Lang.",
]
default_if_columns = [
"Rank",
"Model Name",
"Average Accuracy (Ar)",
"Ar Prompt-lvl",
"Ar Instruction-lvl",
"Average Accuracy (En)",
]
with gr.Blocks() as demo:
gr.HTML(HEADER)
with gr.Tabs():
#
# AL Leaderboards Tab (AraGen + IFEval)
#
with gr.Tab("AL Leaderboards 🏅"):
with gr.Tabs():
# -------------------------
# Sub-Tab: AraGen Leaderboards
# -------------------------
with gr.Tab("🐪 AraGen Leaderboards (v3)"):
with gr.Tabs():
# 3C3H Scores
with gr.Tab("3C3H Scores"):
with gr.Accordion("⚙️ Filters", open=False):
with gr.Row():
search_box_3c3h = gr.Textbox(
placeholder="Search for models...",
label="Search",
interactive=True,
)
with gr.Row():
column_selector_3c3h = gr.CheckboxGroup(
choices=column_choices_3c3h,
value=[
"Rank",
"Rank Spread",
"Model Name",
"3C3H Score",
"95% CI (±)",
"Correctness",
"Completeness",
"Conciseness",
"Helpfulness",
"Honesty",
"Harmlessness",
],
label="Select columns to display",
)
with gr.Row():
license_filter_3c3h = gr.CheckboxGroup(
choices=license_options_3c3h,
value=license_options_3c3h.copy(),
label="Filter by License",
)
precision_filter_3c3h = gr.CheckboxGroup(
choices=precision_options_3c3h,
value=precision_options_3c3h.copy(),
label="Filter by Precision",
)
with gr.Row():
model_size_min_filter_3c3h = gr.Slider(
minimum=min_model_size_3c3h,
maximum=max_model_size_3c3h,
value=min_model_size_3c3h,
step=1,
label="Minimum Model Size",
interactive=True,
)
model_size_max_filter_3c3h = gr.Slider(
minimum=min_model_size_3c3h,
maximum=max_model_size_3c3h,
value=max_model_size_3c3h,
step=1,
label="Maximum Model Size",
interactive=True,
)
leaderboard_3c3h = gr.Dataframe(
df_3c3h_ar[
[
"Rank",
"Rank Spread",
"Model Name",
"3C3H Score",
"95% CI (±)",
"Correctness",
"Completeness",
"Conciseness",
"Helpfulness",
"Honesty",
"Harmlessness",
]
],
interactive=False,
)
filter_inputs_3c3h = [
search_box_3c3h,
column_selector_3c3h,
precision_filter_3c3h,
license_filter_3c3h,
model_size_min_filter_3c3h,
model_size_max_filter_3c3h,
]
search_box_3c3h.submit(
filter_df_3c3h,
inputs=filter_inputs_3c3h,
outputs=leaderboard_3c3h,
)
for component in filter_inputs_3c3h:
component.change(
filter_df_3c3h,
inputs=filter_inputs_3c3h,
outputs=leaderboard_3c3h,
)
# Tasks Scores
with gr.Tab("Tasks Scores"):
gr.Markdown(
"This table is sorted based on the **first task** "
"(e.g., Question Answering (QA))."
)
with gr.Accordion("⚙️ Filters", open=False):
with gr.Row():
search_box_tasks = gr.Textbox(
placeholder="Search for models...",
label="Search",
interactive=True,
)
with gr.Row():
column_selector_tasks = gr.CheckboxGroup(
choices=column_choices_tasks,
value=["Rank", "Model Name"] + task_columns_ar,
label="Select columns to display",
)
with gr.Row():
license_filter_tasks = gr.CheckboxGroup(
choices=license_options_tasks,
value=license_options_tasks.copy(),
label="Filter by License",
)
precision_filter_tasks = gr.CheckboxGroup(
choices=precision_options_tasks,
value=precision_options_tasks.copy(),
label="Filter by Precision",
)
with gr.Row():
model_size_min_filter_tasks = gr.Slider(
minimum=min_model_size_tasks,
maximum=max_model_size_tasks,
value=min_model_size_tasks,
step=1,
label="Minimum Model Size",
interactive=True,
)
model_size_max_filter_tasks = gr.Slider(
minimum=min_model_size_tasks,
maximum=max_model_size_tasks,
value=max_model_size_tasks,
step=1,
label="Maximum Model Size",
interactive=True,
)
leaderboard_tasks = gr.Dataframe(
df_tasks_ar[["Rank", "Model Name"] + task_columns_ar],
interactive=False,
)
filter_inputs_tasks = [
search_box_tasks,
column_selector_tasks,
precision_filter_tasks,
license_filter_tasks,
model_size_min_filter_tasks,
model_size_max_filter_tasks,
]
search_box_tasks.submit(
lambda sq, cols, pf, lf, min_val, max_val: filter_df_tasks(
sq, cols, pf, lf, min_val, max_val, task_columns_ar
),
inputs=filter_inputs_tasks,
outputs=leaderboard_tasks,
)
for component in filter_inputs_tasks:
component.change(
lambda sq, cols, pf, lf, min_val, max_val: filter_df_tasks(
sq, cols, pf, lf, min_val, max_val, task_columns_ar
),
inputs=filter_inputs_tasks,
outputs=leaderboard_tasks,
)
# -------------------------
# Sub-Tab: Instruction Following Leaderboard
# -------------------------
with gr.Tab("🗡️ Instruction Following Leaderboard"):
with gr.Accordion("⚙️ Filters", open=False):
with gr.Row():
search_box_if = gr.Textbox(
placeholder="Search for models...",
label="Search",
interactive=True,
)
with gr.Row():
column_selector_if = gr.CheckboxGroup(
choices=all_if_columns,
value=default_if_columns,
label="Select columns to display",
)
with gr.Row():
family_filter_if = gr.CheckboxGroup(
choices=family_options_if,
value=family_options_if.copy(),
label="Filter by Family",
)
with gr.Row():
model_size_min_filter_if = gr.Slider(
minimum=min_model_size_if,
maximum=max_model_size_if,
value=min_model_size_if,
step=1,
label="Minimum Model Size",
interactive=True,
)
model_size_max_filter_if = gr.Slider(
minimum=min_model_size_if,
maximum=max_model_size_if,
value=max_model_size_if,
step=1,
label="Maximum Model Size",
interactive=True,
)
leaderboard_if = gr.Dataframe(
df_if[default_if_columns],
interactive=False,
)
filter_inputs_if = [
search_box_if,
column_selector_if,
family_filter_if,
model_size_min_filter_if,
model_size_max_filter_if,
]
search_box_if.submit(
filter_if_df, inputs=filter_inputs_if, outputs=leaderboard_if
)
for component in filter_inputs_if:
component.change(
filter_if_df, inputs=filter_inputs_if, outputs=leaderboard_if
)
#
# HindiGen Leaderboards Tab
#
with gr.Tab("HindiGen Leaderboards 🇮🇳"):
with gr.Tabs():
# 3C3H Scores
with gr.Tab("3C3H Scores"):
with gr.Accordion("⚙️ Filters", open=False):
with gr.Row():
search_box_3c3h_hi = gr.Textbox(
placeholder="Search for models...",
label="Search",
interactive=True,
)
with gr.Row():
column_selector_3c3h_hi = gr.CheckboxGroup(
choices=column_choices_3c3h_hi,
value=[
"Rank",
"Rank Spread",
"Model Name",
"3C3H Score",
"95% CI (±)",
"Correctness",
"Completeness",
"Conciseness",
"Helpfulness",
"Honesty",
"Harmlessness",
],
label="Select columns to display",
)
with gr.Row():
license_filter_3c3h_hi = gr.CheckboxGroup(
choices=license_options_3c3h_hi,
value=license_options_3c3h_hi.copy(),
label="Filter by License",
)
precision_filter_3c3h_hi = gr.CheckboxGroup(
choices=precision_options_3c3h_hi,
value=precision_options_3c3h_hi.copy(),
label="Filter by Precision",
)
with gr.Row():
model_size_min_filter_3c3h_hi = gr.Slider(
minimum=min_model_size_3c3h_hi,
maximum=max_model_size_3c3h_hi,
value=min_model_size_3c3h_hi,
step=1,
label="Minimum Model Size",
interactive=True,
)
model_size_max_filter_3c3h_hi = gr.Slider(
minimum=min_model_size_3c3h_hi,
maximum=max_model_size_3c3h_hi,
value=max_model_size_3c3h_hi,
step=1,
label="Maximum Model Size",
interactive=True,
)
leaderboard_3c3h_hi = gr.Dataframe(
df_3c3h_hi[
[
"Rank",
"Rank Spread",
"Model Name",
"3C3H Score",
"95% CI (±)",
"Correctness",
"Completeness",
"Conciseness",
"Helpfulness",
"Honesty",
"Harmlessness",
]
],
interactive=False,
)
filter_inputs_3c3h_hi = [
search_box_3c3h_hi,
column_selector_3c3h_hi,
precision_filter_3c3h_hi,
license_filter_3c3h_hi,
model_size_min_filter_3c3h_hi,
model_size_max_filter_3c3h_hi,
]
search_box_3c3h_hi.submit(
filter_df_3c3h_hindigen,
inputs=filter_inputs_3c3h_hi,
outputs=leaderboard_3c3h_hi,
)
for component in filter_inputs_3c3h_hi:
component.change(
filter_df_3c3h_hindigen,
inputs=filter_inputs_3c3h_hi,
outputs=leaderboard_3c3h_hi,
)
# Tasks Scores
with gr.Tab("Tasks Scores"):
gr.Markdown(
"This table is sorted based on the **first task** "
"(e.g., Question Answering (QA))."
)
with gr.Accordion("⚙️ Filters", open=False):
with gr.Row():
search_box_tasks_hi = gr.Textbox(
placeholder="Search for models...",
label="Search",
interactive=True,
)
with gr.Row():
column_selector_tasks_hi = gr.CheckboxGroup(
choices=column_choices_tasks_hi,
value=["Rank", "Model Name"] + task_columns_hi,
label="Select columns to display",
)
with gr.Row():
license_filter_tasks_hi = gr.CheckboxGroup(
choices=license_options_tasks_hi,
value=license_options_tasks_hi.copy(),
label="Filter by License",
)
precision_filter_tasks_hi = gr.CheckboxGroup(
choices=precision_options_tasks_hi,
value=precision_options_tasks_hi.copy(),
label="Filter by Precision",
)
with gr.Row():
model_size_min_filter_tasks_hi = gr.Slider(
minimum=min_model_size_tasks_hi,
maximum=max_model_size_tasks_hi,
value=min_model_size_tasks_hi,
step=1,
label="Minimum Model Size",
interactive=True,
)
model_size_max_filter_tasks_hi = gr.Slider(
minimum=min_model_size_tasks_hi,
maximum=max_model_size_tasks_hi,
value=max_model_size_tasks_hi,
step=1,
label="Maximum Model Size",
interactive=True,
)
leaderboard_tasks_hi = gr.Dataframe(
df_tasks_hi[["Rank", "Model Name"] + task_columns_hi],
interactive=False,
)
filter_inputs_tasks_hi = [
search_box_tasks_hi,
column_selector_tasks_hi,
precision_filter_tasks_hi,
license_filter_tasks_hi,
model_size_min_filter_tasks_hi,
model_size_max_filter_tasks_hi,
]
search_box_tasks_hi.submit(
lambda sq, cols, pf, lf, min_val, max_val: filter_df_tasks_hindigen(
sq, cols, pf, lf, min_val, max_val, task_columns_hi
),
inputs=filter_inputs_tasks_hi,
outputs=leaderboard_tasks_hi,
)
for component in filter_inputs_tasks_hi:
component.change(
lambda sq, cols, pf, lf, min_val, max_val: filter_df_tasks_hindigen(
sq, cols, pf, lf, min_val, max_val, task_columns_hi
),
inputs=filter_inputs_tasks_hi,
outputs=leaderboard_tasks_hi,
)
#
# About & Submit Tab
#
with gr.Tab("About & Submit Page 📝"):
# Load request tables for all three request datasets
df_pending_ar = load_requests(ARAGEN_REQUESTS_REPO_ID, "pending")
df_finished_ar = load_requests(ARAGEN_REQUESTS_REPO_ID, "finished")
df_failed_ar = load_requests(ARAGEN_REQUESTS_REPO_ID, "failed")
df_pending_hi = load_requests(HINDIGEN_REQUESTS_REPO_ID, "pending")
df_finished_hi = load_requests(HINDIGEN_REQUESTS_REPO_ID, "finished")
df_failed_hi = load_requests(HINDIGEN_REQUESTS_REPO_ID, "failed")
df_pending_if = load_requests(IFEVAL_REQUESTS_REPO_ID, "pending")
df_finished_if = load_requests(IFEVAL_REQUESTS_REPO_ID, "finished")
df_failed_if = load_requests(IFEVAL_REQUESTS_REPO_ID, "failed")
gr.Markdown(ABOUT_SECTION)
gr.Markdown("## Submit Your Model for Evaluation")
with gr.Column():
model_name_input = gr.Textbox(
label="Model Name",
placeholder="Enter the full model name from HuggingFace Hub (e.g., inceptionai/jais-family-30b-8k)",
)
revision_input = gr.Textbox(
label="Revision", placeholder="main", value="main"
)
precision_input = gr.Dropdown(
choices=["float16", "float32", "bfloat16", "8bit", "4bit"],
label="Precision",
value="float16",
)
params_input = gr.Textbox(
label="Params",
placeholder="Enter the approximate number of parameters as Integer (e.g., 7, 13, 30, 70 ...)",
)
license_input = gr.Textbox(
label="License",
placeholder="Enter the license type (Generic one is 'Open' in case no License is provided)",
value="Open",
)
modality_input = gr.Radio(
choices=["Text"],
label="Modality",
value="Text",
)
leaderboard_targets = gr.CheckboxGroup(
choices=["AraGen", "HindiGen", "IFEval"],
label="Choose which leaderboard(s) to submit to",
info="You must choose at least one.",
)
submit_button = gr.Button("Submit Model")
submission_result = gr.Markdown()
submit_button.click(
submit_model,
inputs=[
model_name_input,
revision_input,
precision_input,
params_input,
license_input,
modality_input,
leaderboard_targets,
],
outputs=submission_result,
)
gr.Markdown("## Evaluation Status")
gr.Markdown("### AraGen Requests")
with gr.Accordion(
f"AraGen – Pending Evaluations ({len(df_pending_ar)})", open=False
):
if not df_pending_ar.empty:
gr.Dataframe(df_pending_ar)
else:
gr.Markdown("No pending evaluations.")
with gr.Accordion(
f"AraGen – Finished Evaluations ({len(df_finished_ar)})", open=False
):
if not df_finished_ar.empty:
gr.Dataframe(df_finished_ar)
else:
gr.Markdown("No finished evaluations.")
with gr.Accordion(
f"AraGen – Failed Evaluations ({len(df_failed_ar)})", open=False
):
if not df_failed_ar.empty:
gr.Dataframe(df_failed_ar)
else:
gr.Markdown("No failed evaluations.")
gr.Markdown("### HindiGen Requests")
with gr.Accordion(
f"HindiGen – Pending Evaluations ({len(df_pending_hi)})", open=False
):
if not df_pending_hi.empty:
gr.Dataframe(df_pending_hi)
else:
gr.Markdown("No pending evaluations.")
with gr.Accordion(
f"HindiGen – Finished Evaluations ({len(df_finished_hi)})", open=False
):
if not df_finished_hi.empty:
gr.Dataframe(df_finished_hi)
else:
gr.Markdown("No finished evaluations.")
with gr.Accordion(
f"HindiGen – Failed Evaluations ({len(df_failed_hi)})", open=False
):
if not df_failed_hi.empty:
gr.Dataframe(df_failed_hi)
else:
gr.Markdown("No failed evaluations.")
gr.Markdown("### IFEval Requests")
with gr.Accordion(
f"IFEval – Pending Evaluations ({len(df_pending_if)})", open=False
):
if not df_pending_if.empty:
gr.Dataframe(df_pending_if)
else:
gr.Markdown("No pending evaluations.")
with gr.Accordion(
f"IFEval – Finished Evaluations ({len(df_finished_if)})", open=False
):
if not df_finished_if.empty:
gr.Dataframe(df_finished_if)
else:
gr.Markdown("No finished evaluations.")
with gr.Accordion(
f"IFEval – Failed Evaluations ({len(df_failed_if)})", open=False
):
if not df_failed_if.empty:
gr.Dataframe(df_failed_if)
else:
gr.Markdown("No failed evaluations.")
# Citation Section
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=8,
elem_id="citation-button",
show_copy_button=True,
)
gr.HTML(BOTTOM_LOGO)
demo.launch()
if __name__ == "__main__":
main()