Spaces:
Sleeping
Sleeping
File size: 17,446 Bytes
aa08558 c86b565 c1db3b1 5a72acd aa08558 c1db3b1 aa08558 c1db3b1 c86b565 c1db3b1 aa08558 c1db3b1 5a72acd c1db3b1 5a72acd c1db3b1 43b9c59 c1db3b1 5a72acd c1db3b1 5a72acd c1db3b1 c86b565 c1db3b1 c86b565 c1db3b1 c86b565 c1db3b1 c86b565 c1db3b1 c86b565 c1db3b1 c86b565 5a72acd c86b565 5a72acd c86b565 43b9c59 5a72acd c1db3b1 5a72acd c86b565 5a72acd c86b565 5a72acd c1db3b1 5a72acd aa08558 c1db3b1 aa08558 c1db3b1 6688f71 d139f21 da3acd6 d139f21 e57cc95 5a72acd d72d6be c1db3b1 5a72acd c1db3b1 5a72acd c1db3b1 5a72acd d72d6be 5a72acd d48a129 5a72acd c1db3b1 43b9c59 c1db3b1 5a72acd c1db3b1 5a72acd c86b565 43b9c59 5a72acd 43b9c59 d6bc7f1 5a72acd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import gradio as gr
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModel
import numpy as np
# Configuration
MODEL_NAME = "roberta-base"
MAX_LEN = 200
EMOTIONS = ["anger", "fear", "joy", "sadness", "surprise"]
EMOTION_EMOJIS = ["😠", "😨", "😊", "😢", "😲"]
EMOTION_COLORS = ["#ef4444", "#f59e0b", "#10b981", "#3b82f6", "#8b5cf6"]
# Model Architecture (MUST MATCH TRAINING)
class RobertaEmotion(nn.Module):
def __init__(self, model_name=MODEL_NAME, dropout=0.35, num_labels=5):
super().__init__()
self.backbone = AutoModel.from_pretrained(model_name)
hidden_size = self.backbone.config.hidden_size
self.dropout = nn.Dropout(dropout)
self.head = nn.Linear(hidden_size, num_labels)
def forward(self, input_ids, attention_mask):
out = self.backbone(input_ids=input_ids, attention_mask=attention_mask)
if hasattr(out, "pooler_output") and out.pooler_output is not None:
pooled = out.pooler_output
else:
pooled = out.last_hidden_state[:, 0]
x = self.dropout(pooled)
logits = self.head(x)
return logits
# Load model and tokenizer
print("🔄 Loading EmotiScan model...")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"📱 Device: {device}")
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = RobertaEmotion(num_labels=len(EMOTIONS))
# Load trained weights
state_dict = torch.load('roberta.pth', map_location=device)
model.load_state_dict(state_dict)
model = model.to(device)
model.eval()
print("✅ EmotiScan ready!")
except Exception as e:
print(f"⚠️ Error loading model: {e}")
raise e
# Optimized thresholds from training
BEST_THRESHOLDS = np.array([0.5, 0.5, 0.5, 0.5, 0.5])
def predict_emotions(text):
"""Predict emotions from text with enhanced visualization"""
if not text or not text.strip():
return """
<div style="text-align: center; padding: 40px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 16px; color: white;">
<div style="font-size: 48px; margin-bottom: 16px;">🤔</div>
<div style="font-size: 20px; font-weight: 600;">Waiting for your text...</div>
<div style="font-size: 14px; opacity: 0.9; margin-top: 8px;">Enter some text above to analyze emotions</div>
</div>
"""
try:
# Tokenize
encoding = tokenizer(
text,
truncation=True,
padding="max_length",
max_length=MAX_LEN,
return_tensors="pt"
)
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
# Predict
with torch.no_grad():
logits = model(input_ids, attention_mask)
probs = torch.sigmoid(logits).cpu().numpy()[0]
# Apply thresholds
predictions = (probs > BEST_THRESHOLDS).astype(int)
# Build beautiful HTML output
html = """
<style>
@keyframes fadeIn {
from { opacity: 0; transform: translateY(10px); }
to { opacity: 1; transform: translateY(0); }
}
@keyframes pulse {
0%, 100% { transform: scale(1); }
50% { transform: scale(1.05); }
}
.emotion-card {
animation: fadeIn 0.5s ease-out;
transition: all 0.3s ease;
}
.emotion-card:hover {
transform: translateY(-4px);
box-shadow: 0 8px 24px rgba(0,0,0,0.15);
}
.detected-badge {
animation: pulse 2s infinite;
}
.progress-bar {
transition: width 0.8s ease-out;
}
</style>
"""
# Detected emotions section
detected = [(emotion, emoji, prob, color) for emotion, emoji, prob, pred, color
in zip(EMOTIONS, EMOTION_EMOJIS, probs, predictions, EMOTION_COLORS) if pred == 1]
if detected:
html += """
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 24px; border-radius: 16px; margin-bottom: 24px; text-align: center;">
<div style="color: white; font-size: 18px; font-weight: 600; margin-bottom: 16px;">
🎯 Detected Emotions
</div>
<div style="display: flex; gap: 12px; flex-wrap: wrap; justify-content: center;">
"""
for emotion, emoji, prob, color in detected:
html += f"""
<div class="detected-badge" style="background: white; padding: 12px 20px;
border-radius: 24px; display: flex; align-items: center; gap: 8px;
box-shadow: 0 4px 12px rgba(0,0,0,0.1);">
<span style="font-size: 24px;">{emoji}</span>
<span style="font-weight: 600; color: {color}; text-transform: capitalize;">
{emotion}
</span>
<span style="background: {color}; color: white; padding: 2px 8px;
border-radius: 12px; font-size: 12px; font-weight: 600;">
{prob:.0%}
</span>
</div>
"""
html += "</div></div>"
else:
html += """
<div style="background: linear-gradient(135deg, #6b7280 0%, #4b5563 100%);
padding: 24px; border-radius: 16px; margin-bottom: 24px; text-align: center; color: white;">
<div style="font-size: 32px; margin-bottom: 8px;">😐</div>
<div style="font-size: 16px; font-weight: 600;">No Strong Emotions Detected</div>
<div style="font-size: 14px; opacity: 0.8; margin-top: 4px;">All emotions below threshold</div>
</div>
"""
# All emotions with progress bars
html += """
<div style="background: white; padding: 24px; border-radius: 16px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<div style="font-size: 18px; font-weight: 600; margin-bottom: 20px; color: #1f2937;">
📊 Emotion Breakdown
</div>
<div style="display: flex; flex-direction: column; gap: 16px;">
"""
for emotion, emoji, prob, color in zip(EMOTIONS, EMOTION_EMOJIS, probs, EMOTION_COLORS):
html += f"""
<div class="emotion-card" style="background: #f9fafb; padding: 16px; border-radius: 12px;
border-left: 4px solid {color};">
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 8px;">
<div style="display: flex; align-items: center; gap: 10px;">
<span style="font-size: 28px;">{emoji}</span>
<span style="font-weight: 600; color: #374151; text-transform: capitalize; font-size: 16px;">
{emotion}
</span>
</div>
<span style="font-weight: 700; color: {color}; font-size: 18px;">
{prob:.1%}
</span>
</div>
<div style="background: #e5e7eb; height: 12px; border-radius: 6px; overflow: hidden;">
<div class="progress-bar" style="background: linear-gradient(90deg, {color}, {color}dd);
height: 100%; width: {prob*100}%; border-radius: 6px;
box-shadow: 0 0 8px {color}66;"></div>
</div>
</div>
"""
html += "</div></div>"
return html
except Exception as e:
return f"""
<div style="background: #fef2f2; border: 2px solid #ef4444; padding: 20px;
border-radius: 12px; color: #991b1b;">
<div style="font-size: 24px; margin-bottom: 8px;">⚠️</div>
<div style="font-weight: 600; margin-bottom: 4px;">Analysis Error</div>
<div style="font-size: 14px;">{str(e)}</div>
</div>
"""
# Example texts
examples = [
["I just got promoted at work! I can't believe it!"],
["I'm so worried about the exam tomorrow. What if I fail?"],
["This is absolutely unacceptable! I demand to speak to the manager!"],
["I miss my family so much. It's been months since I've seen them."],
["Wow! I never expected to see you here!"],
["I'm excited but also nervous about starting my new job next week."],
]
# Create Gradio Interface
with gr.Blocks() as demo:
gr.HTML("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600;700&display=swap');
* {
font-family: 'Inter', sans-serif !important;
}
.gradio-container {
max-width: 1400px !important;
margin: 0 auto !important;
}
button {
border-radius: 12px !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
}
button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 20px rgba(0,0,0,0.15) !important;
}
textarea {
border-radius: 12px !important;
border: 2px solid #e5e7eb !important;
transition: all 0.3s ease !important;
}
textarea:focus {
border-color: #667eea !important;
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
}
</style>
<div style="background: linear-gradient(135deg, #6ee7b7 0%, #34d399 100%); padding: 40px; border-radius: 20px; margin-bottom: 30px; text-align: center; color: white; box-shadow: 0 10px 30px rgba(52, 211, 153, 0.3);">
<div style="font-size: 56px; margin-bottom: 16px;">🎭</div>
<h1 style="font-size: 48px; font-weight: 700; margin: 0 0 12px 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">
EmotiScan
</h1>
<p style="font-size: 20px; opacity: 0.95; margin: 0; font-weight: 500;">
AI-Powered Multi-Emotion Detection
</p>
<div style="margin-top: 20px; display: flex; gap: 16px; justify-content: center; flex-wrap: wrap;">
<span style="background: rgba(255,255,255,0.2); padding: 8px 16px; border-radius: 20px; font-size: 14px;">
😠 Anger
</span>
<span style="background: rgba(255,255,255,0.2); padding: 8px 16px; border-radius: 20px; font-size: 14px;">
😨 Fear
</span>
<span style="background: rgba(255,255,255,0.2); padding: 8px 16px; border-radius: 20px; font-size: 14px;">
😊 Joy
</span>
<span style="background: rgba(255,255,255,0.2); padding: 8px 16px; border-radius: 20px; font-size: 14px;">
😢 Sadness
</span>
<span style="background: rgba(255,255,255,0.2); padding: 8px 16px; border-radius: 20px; font-size: 14px;">
😲 Surprise
</span>
</div>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
text_input = gr.Textbox(
label="📝 Your Text",
placeholder="Type or paste your text here to discover the emotions within...",
lines=8,
max_lines=12
)
with gr.Row():
analyze_btn = gr.Button("🔮 Analyze Emotions", variant="primary", size="lg")
clear_btn = gr.Button("🗑️ Clear", size="lg")
with gr.Column(scale=1):
output = gr.HTML(label="Analysis Results", value="""
<div style="text-align: center; padding: 60px 40px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 16px; color: white; height: 100%;">
<div style="font-size: 64px; margin-bottom: 20px;">🎭</div>
<div style="font-size: 24px; font-weight: 700; margin-bottom: 12px;">Welcome to EmotiScan</div>
<div style="font-size: 16px; opacity: 0.9;">Enter text to begin emotional analysis</div>
</div>
""")
gr.Examples(
examples=examples,
inputs=text_input,
outputs=output,
fn=predict_emotions,
cache_examples=False,
label="💡 Try These Examples"
)
gr.HTML("""
<div style="background: white; padding: 32px; border-radius: 16px; margin-top: 30px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h2 style="color: #1f2937; margin-bottom: 20px; font-size: 24px; font-weight: 700;">
🧠 About EmotiScan
</h2>
<p style="color: #4b5563; line-height: 1.8; margin-bottom: 24px; font-size: 15px;">
EmotiScan uses state-of-the-art deep learning to detect multiple emotions simultaneously in text.
Unlike traditional single-emotion classifiers, our model recognizes that human expression is complex
and nuanced—one piece of text can convey multiple emotions at once.
</p>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 20px; margin-top: 24px;">
<div style="background: linear-gradient(135deg, #667eea22 0%, #764ba222 100%); padding: 20px; border-radius: 12px;">
<div style="font-size: 32px; margin-bottom: 8px;">🤖</div>
<div style="font-weight: 600; color: #1f2937; margin-bottom: 4px;">Model</div>
<div style="color: #6b7280; font-size: 14px;">RoBERTa-base (125M params)</div>
</div>
<div style="background: linear-gradient(135deg, #10b98122 0%, #059669 22 100%); padding: 20px; border-radius: 12px;">
<div style="font-size: 32px; margin-bottom: 8px;">🎯</div>
<div style="font-weight: 600; color: #1f2937; margin-bottom: 4px;">Accuracy</div>
<div style="color: #6b7280; font-size: 14px;">Optimized F1-Score per class</div>
</div>
<div style="background: linear-gradient(135deg, #f59e0b22 0%, #d9770622 100%); padding: 20px; border-radius: 12px;">
<div style="font-size: 32px; margin-bottom: 8px;">⚡</div>
<div style="font-weight: 600; color: #1f2937; margin-bottom: 4px;">Speed</div>
<div style="color: #6b7280; font-size: 14px;">Real-time inference</div>
</div>
</div>
<div style="margin-top: 32px; padding: 20px; background: #f9fafb; border-radius: 12px; border-left: 4px solid #667eea;">
<div style="font-weight: 600; color: #1f2937; margin-bottom: 12px; font-size: 16px;">
📚 Technical Details
</div>
<ul style="color: #4b5563; line-height: 2; margin: 0; padding-left: 20px; font-size: 14px;">
<li><strong>Architecture:</strong> Transformer encoder with classification head</li>
<li><strong>Training:</strong> BCE Loss with label smoothing (0.05)</li>
<li><strong>Max Tokens:</strong> 200 tokens per input</li>
<li><strong>Dropout:</strong> 0.35 for regularization</li>
<li><strong>Multi-Label:</strong> Each emotion is independently predicted</li>
</ul>
</div>
<div style="margin-top: 24px; text-align: center; color: #9ca3af; font-size: 14px;">
<p style="margin: 0;">Built with PyTorch • Transformers • Gradio</p>
<p style="margin: 4px 0 0 0;">2025 Sep DLGenAI Course Project</p>
</div>
</div>
""")
# Event handlers
analyze_btn.click(fn=predict_emotions, inputs=text_input, outputs=output)
clear_btn.click(
fn=lambda: ("", """
<div style="text-align: center; padding: 60px 40px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 16px; color: white; height: 100%;">
<div style="font-size: 64px; margin-bottom: 20px;">🎭</div>
<div style="font-size: 24px; font-weight: 700; margin-bottom: 12px;">Welcome to EmotiScan</div>
<div style="font-size: 16px; opacity: 0.9;">Enter text to begin emotional analysis</div>
</div>
"""),
inputs=None,
outputs=[text_input, output]
)
text_input.submit(fn=predict_emotions, inputs=text_input, outputs=output)
if __name__ == "__main__":
demo.launch(share=True, server_name="0.0.0.0") |