File size: 17,446 Bytes
aa08558
 
 
 
 
 
c86b565
c1db3b1
 
 
 
5a72acd
aa08558
c1db3b1
 
 
aa08558
c1db3b1
 
 
 
 
c86b565
c1db3b1
 
 
 
 
 
 
 
aa08558
c1db3b1
5a72acd
c1db3b1
 
 
 
 
 
 
 
 
 
 
 
 
5a72acd
c1db3b1
 
 
 
43b9c59
 
c1db3b1
 
5a72acd
c1db3b1
5a72acd
 
 
 
 
 
 
c1db3b1
 
c86b565
c1db3b1
 
c86b565
 
c1db3b1
c86b565
 
 
c1db3b1
 
 
 
c86b565
c1db3b1
 
c86b565
c1db3b1
 
c86b565
5a72acd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c86b565
5a72acd
 
 
c86b565
43b9c59
5a72acd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1db3b1
5a72acd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c86b565
5a72acd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c86b565
5a72acd
 
 
c1db3b1
 
5a72acd
 
 
 
 
 
 
 
aa08558
c1db3b1
 
 
 
 
 
 
 
 
aa08558
c1db3b1
6688f71
d139f21
 
 
 
 
 
 
 
da3acd6
 
 
 
 
d139f21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e57cc95
5a72acd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d72d6be
c1db3b1
5a72acd
c1db3b1
5a72acd
 
 
 
c1db3b1
5a72acd
 
 
d72d6be
5a72acd
 
d48a129
5a72acd
 
 
 
 
 
c1db3b1
 
 
 
43b9c59
c1db3b1
5a72acd
 
c1db3b1
 
5a72acd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c86b565
43b9c59
 
5a72acd
 
 
 
 
 
 
 
 
 
 
 
43b9c59
d6bc7f1
 
5a72acd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import gradio as gr
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModel
import numpy as np

# Configuration
MODEL_NAME = "roberta-base"
MAX_LEN = 200
EMOTIONS = ["anger", "fear", "joy", "sadness", "surprise"]
EMOTION_EMOJIS = ["😠", "😨", "😊", "😢", "😲"]
EMOTION_COLORS = ["#ef4444", "#f59e0b", "#10b981", "#3b82f6", "#8b5cf6"]

# Model Architecture (MUST MATCH TRAINING)
class RobertaEmotion(nn.Module):
    def __init__(self, model_name=MODEL_NAME, dropout=0.35, num_labels=5):
        super().__init__()
        self.backbone = AutoModel.from_pretrained(model_name)
        hidden_size = self.backbone.config.hidden_size
        self.dropout = nn.Dropout(dropout)
        self.head = nn.Linear(hidden_size, num_labels)

    def forward(self, input_ids, attention_mask):
        out = self.backbone(input_ids=input_ids, attention_mask=attention_mask)
        if hasattr(out, "pooler_output") and out.pooler_output is not None:
            pooled = out.pooler_output
        else:
            pooled = out.last_hidden_state[:, 0]
        x = self.dropout(pooled)
        logits = self.head(x)
        return logits

# Load model and tokenizer
print("🔄 Loading EmotiScan model...")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"📱 Device: {device}")

try:
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
    model = RobertaEmotion(num_labels=len(EMOTIONS))
    
    # Load trained weights
    state_dict = torch.load('roberta.pth', map_location=device)
    model.load_state_dict(state_dict)
    model = model.to(device)
    model.eval()
    
    print("✅ EmotiScan ready!")
except Exception as e:
    print(f"⚠️ Error loading model: {e}")
    raise e

# Optimized thresholds from training
BEST_THRESHOLDS = np.array([0.5, 0.5, 0.5, 0.5, 0.5])

def predict_emotions(text):
    """Predict emotions from text with enhanced visualization"""
    if not text or not text.strip():
        return """
        <div style="text-align: center; padding: 40px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 16px; color: white;">
            <div style="font-size: 48px; margin-bottom: 16px;">🤔</div>
            <div style="font-size: 20px; font-weight: 600;">Waiting for your text...</div>
            <div style="font-size: 14px; opacity: 0.9; margin-top: 8px;">Enter some text above to analyze emotions</div>
        </div>
        """
    
    try:
        # Tokenize
        encoding = tokenizer(
            text,
            truncation=True,
            padding="max_length",
            max_length=MAX_LEN,
            return_tensors="pt"
        )
        
        input_ids = encoding["input_ids"].to(device)
        attention_mask = encoding["attention_mask"].to(device)
        
        # Predict
        with torch.no_grad():
            logits = model(input_ids, attention_mask)
            probs = torch.sigmoid(logits).cpu().numpy()[0]
        
        # Apply thresholds
        predictions = (probs > BEST_THRESHOLDS).astype(int)
        
        # Build beautiful HTML output
        html = """
        <style>
            @keyframes fadeIn {
                from { opacity: 0; transform: translateY(10px); }
                to { opacity: 1; transform: translateY(0); }
            }
            @keyframes pulse {
                0%, 100% { transform: scale(1); }
                50% { transform: scale(1.05); }
            }
            .emotion-card {
                animation: fadeIn 0.5s ease-out;
                transition: all 0.3s ease;
            }
            .emotion-card:hover {
                transform: translateY(-4px);
                box-shadow: 0 8px 24px rgba(0,0,0,0.15);
            }
            .detected-badge {
                animation: pulse 2s infinite;
            }
            .progress-bar {
                transition: width 0.8s ease-out;
            }
        </style>
        """
        
        # Detected emotions section
        detected = [(emotion, emoji, prob, color) for emotion, emoji, prob, pred, color 
                   in zip(EMOTIONS, EMOTION_EMOJIS, probs, predictions, EMOTION_COLORS) if pred == 1]
        
        if detected:
            html += """
            <div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); 
                        padding: 24px; border-radius: 16px; margin-bottom: 24px; text-align: center;">
                <div style="color: white; font-size: 18px; font-weight: 600; margin-bottom: 16px;">
                    🎯 Detected Emotions
                </div>
                <div style="display: flex; gap: 12px; flex-wrap: wrap; justify-content: center;">
            """
            for emotion, emoji, prob, color in detected:
                html += f"""
                <div class="detected-badge" style="background: white; padding: 12px 20px; 
                     border-radius: 24px; display: flex; align-items: center; gap: 8px;
                     box-shadow: 0 4px 12px rgba(0,0,0,0.1);">
                    <span style="font-size: 24px;">{emoji}</span>
                    <span style="font-weight: 600; color: {color}; text-transform: capitalize;">
                        {emotion}
                    </span>
                    <span style="background: {color}; color: white; padding: 2px 8px; 
                          border-radius: 12px; font-size: 12px; font-weight: 600;">
                        {prob:.0%}
                    </span>
                </div>
                """
            html += "</div></div>"
        else:
            html += """
            <div style="background: linear-gradient(135deg, #6b7280 0%, #4b5563 100%); 
                        padding: 24px; border-radius: 16px; margin-bottom: 24px; text-align: center; color: white;">
                <div style="font-size: 32px; margin-bottom: 8px;">😐</div>
                <div style="font-size: 16px; font-weight: 600;">No Strong Emotions Detected</div>
                <div style="font-size: 14px; opacity: 0.8; margin-top: 4px;">All emotions below threshold</div>
            </div>
            """
        
        # All emotions with progress bars
        html += """
        <div style="background: white; padding: 24px; border-radius: 16px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
            <div style="font-size: 18px; font-weight: 600; margin-bottom: 20px; color: #1f2937;">
                📊 Emotion Breakdown
            </div>
            <div style="display: flex; flex-direction: column; gap: 16px;">
        """
        
        for emotion, emoji, prob, color in zip(EMOTIONS, EMOTION_EMOJIS, probs, EMOTION_COLORS):
            html += f"""
            <div class="emotion-card" style="background: #f9fafb; padding: 16px; border-radius: 12px; 
                 border-left: 4px solid {color};">
                <div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 8px;">
                    <div style="display: flex; align-items: center; gap: 10px;">
                        <span style="font-size: 28px;">{emoji}</span>
                        <span style="font-weight: 600; color: #374151; text-transform: capitalize; font-size: 16px;">
                            {emotion}
                        </span>
                    </div>
                    <span style="font-weight: 700; color: {color}; font-size: 18px;">
                        {prob:.1%}
                    </span>
                </div>
                <div style="background: #e5e7eb; height: 12px; border-radius: 6px; overflow: hidden;">
                    <div class="progress-bar" style="background: linear-gradient(90deg, {color}, {color}dd); 
                         height: 100%; width: {prob*100}%; border-radius: 6px;
                         box-shadow: 0 0 8px {color}66;"></div>
                </div>
            </div>
            """
        
        html += "</div></div>"
        
        return html
        
    except Exception as e:
        return f"""
        <div style="background: #fef2f2; border: 2px solid #ef4444; padding: 20px; 
             border-radius: 12px; color: #991b1b;">
            <div style="font-size: 24px; margin-bottom: 8px;">⚠️</div>
            <div style="font-weight: 600; margin-bottom: 4px;">Analysis Error</div>
            <div style="font-size: 14px;">{str(e)}</div>
        </div>
        """

# Example texts
examples = [
    ["I just got promoted at work! I can't believe it!"],
    ["I'm so worried about the exam tomorrow. What if I fail?"],
    ["This is absolutely unacceptable! I demand to speak to the manager!"],
    ["I miss my family so much. It's been months since I've seen them."],
    ["Wow! I never expected to see you here!"],
    ["I'm excited but also nervous about starting my new job next week."],
]

# Create Gradio Interface
with gr.Blocks() as demo:
    gr.HTML("""
        <style>
            @import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600;700&display=swap');
            
            * {
                font-family: 'Inter', sans-serif !important;
            }
            
            .gradio-container {
                max-width: 1400px !important;
                margin: 0 auto !important;
            }
            
            button {
                border-radius: 12px !important;
                font-weight: 600 !important;
                transition: all 0.3s ease !important;
            }
            
            button:hover {
                transform: translateY(-2px) !important;
                box-shadow: 0 6px 20px rgba(0,0,0,0.15) !important;
            }
            
            textarea {
                border-radius: 12px !important;
                border: 2px solid #e5e7eb !important;
                transition: all 0.3s ease !important;
            }
            
            textarea:focus {
                border-color: #667eea !important;
                box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
            }
        </style>
        <div style="background: linear-gradient(135deg, #6ee7b7 0%, #34d399 100%); padding: 40px; border-radius: 20px; margin-bottom: 30px; text-align: center; color: white; box-shadow: 0 10px 30px rgba(52, 211, 153, 0.3);">
            <div style="font-size: 56px; margin-bottom: 16px;">🎭</div>
            <h1 style="font-size: 48px; font-weight: 700; margin: 0 0 12px 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">
                EmotiScan
            </h1>
            <p style="font-size: 20px; opacity: 0.95; margin: 0; font-weight: 500;">
                AI-Powered Multi-Emotion Detection
            </p>
            <div style="margin-top: 20px; display: flex; gap: 16px; justify-content: center; flex-wrap: wrap;">
                <span style="background: rgba(255,255,255,0.2); padding: 8px 16px; border-radius: 20px; font-size: 14px;">
                    😠 Anger
                </span>
                <span style="background: rgba(255,255,255,0.2); padding: 8px 16px; border-radius: 20px; font-size: 14px;">
                    😨 Fear
                </span>
                <span style="background: rgba(255,255,255,0.2); padding: 8px 16px; border-radius: 20px; font-size: 14px;">
                    😊 Joy
                </span>
                <span style="background: rgba(255,255,255,0.2); padding: 8px 16px; border-radius: 20px; font-size: 14px;">
                    😢 Sadness
                </span>
                <span style="background: rgba(255,255,255,0.2); padding: 8px 16px; border-radius: 20px; font-size: 14px;">
                    😲 Surprise
                </span>
            </div>
        </div>
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            text_input = gr.Textbox(
                label="📝 Your Text",
                placeholder="Type or paste your text here to discover the emotions within...",
                lines=8,
                max_lines=12
            )
            with gr.Row():
                analyze_btn = gr.Button("🔮 Analyze Emotions", variant="primary", size="lg")
                clear_btn = gr.Button("🗑️ Clear", size="lg")
        
        with gr.Column(scale=1):
            output = gr.HTML(label="Analysis Results", value="""
                <div style="text-align: center; padding: 60px 40px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); 
                     border-radius: 16px; color: white; height: 100%;">
                    <div style="font-size: 64px; margin-bottom: 20px;">🎭</div>
                    <div style="font-size: 24px; font-weight: 700; margin-bottom: 12px;">Welcome to EmotiScan</div>
                    <div style="font-size: 16px; opacity: 0.9;">Enter text to begin emotional analysis</div>
                </div>
            """)
    
    gr.Examples(
        examples=examples,
        inputs=text_input,
        outputs=output,
        fn=predict_emotions,
        cache_examples=False,
        label="💡 Try These Examples"
    )
    
    gr.HTML("""
        <div style="background: white; padding: 32px; border-radius: 16px; margin-top: 30px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
            <h2 style="color: #1f2937; margin-bottom: 20px; font-size: 24px; font-weight: 700;">
                🧠 About EmotiScan
            </h2>
            <p style="color: #4b5563; line-height: 1.8; margin-bottom: 24px; font-size: 15px;">
                EmotiScan uses state-of-the-art deep learning to detect multiple emotions simultaneously in text. 
                Unlike traditional single-emotion classifiers, our model recognizes that human expression is complex 
                and nuanced—one piece of text can convey multiple emotions at once.
            </p>
            
            <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 20px; margin-top: 24px;">
                <div style="background: linear-gradient(135deg, #667eea22 0%, #764ba222 100%); padding: 20px; border-radius: 12px;">
                    <div style="font-size: 32px; margin-bottom: 8px;">🤖</div>
                    <div style="font-weight: 600; color: #1f2937; margin-bottom: 4px;">Model</div>
                    <div style="color: #6b7280; font-size: 14px;">RoBERTa-base (125M params)</div>
                </div>
                <div style="background: linear-gradient(135deg, #10b98122 0%, #059669 22 100%); padding: 20px; border-radius: 12px;">
                    <div style="font-size: 32px; margin-bottom: 8px;">🎯</div>
                    <div style="font-weight: 600; color: #1f2937; margin-bottom: 4px;">Accuracy</div>
                    <div style="color: #6b7280; font-size: 14px;">Optimized F1-Score per class</div>
                </div>
                <div style="background: linear-gradient(135deg, #f59e0b22 0%, #d9770622 100%); padding: 20px; border-radius: 12px;">
                    <div style="font-size: 32px; margin-bottom: 8px;">⚡</div>
                    <div style="font-weight: 600; color: #1f2937; margin-bottom: 4px;">Speed</div>
                    <div style="color: #6b7280; font-size: 14px;">Real-time inference</div>
                </div>
            </div>
            
            <div style="margin-top: 32px; padding: 20px; background: #f9fafb; border-radius: 12px; border-left: 4px solid #667eea;">
                <div style="font-weight: 600; color: #1f2937; margin-bottom: 12px; font-size: 16px;">
                    📚 Technical Details
                </div>
                <ul style="color: #4b5563; line-height: 2; margin: 0; padding-left: 20px; font-size: 14px;">
                    <li><strong>Architecture:</strong> Transformer encoder with classification head</li>
                    <li><strong>Training:</strong> BCE Loss with label smoothing (0.05)</li>
                    <li><strong>Max Tokens:</strong> 200 tokens per input</li>
                    <li><strong>Dropout:</strong> 0.35 for regularization</li>
                    <li><strong>Multi-Label:</strong> Each emotion is independently predicted</li>
                </ul>
            </div>
            
            <div style="margin-top: 24px; text-align: center; color: #9ca3af; font-size: 14px;">
                <p style="margin: 0;">Built with PyTorch • Transformers • Gradio</p>
                <p style="margin: 4px 0 0 0;">2025 Sep DLGenAI Course Project</p>
            </div>
        </div>
    """)
    
    # Event handlers
    analyze_btn.click(fn=predict_emotions, inputs=text_input, outputs=output)
    clear_btn.click(
        fn=lambda: ("", """
            <div style="text-align: center; padding: 60px 40px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); 
                 border-radius: 16px; color: white; height: 100%;">
                <div style="font-size: 64px; margin-bottom: 20px;">🎭</div>
                <div style="font-size: 24px; font-weight: 700; margin-bottom: 12px;">Welcome to EmotiScan</div>
                <div style="font-size: 16px; opacity: 0.9;">Enter text to begin emotional analysis</div>
            </div>
        """), 
        inputs=None, 
        outputs=[text_input, output]
    )
    text_input.submit(fn=predict_emotions, inputs=text_input, outputs=output)

if __name__ == "__main__":
    demo.launch(share=True, server_name="0.0.0.0")