Spaces:
Paused
Paused
| import streamlit as st | |
| #from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from langchain_community.llms import CTransformers | |
| from transformers.utils import is_flash_attn_2_available | |
| from transformers import BitsAndBytesConfig | |
| import pandas as pd | |
| import os | |
| import torch | |
| import numpy as np | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| import streamlit as st | |
| import llama_cpp | |
| from llama_cpp import Llama | |
| import llama_cpp.llama_tokenizer | |
| from langchain.llms.base import LLM | |
| from typing import Optional, List, Mapping, Any | |
| from langchain_community.vectorstores import Chroma | |
| from langchain_community.embeddings.sentence_transformer import ( | |
| SentenceTransformerEmbeddings, | |
| ) | |
| # SET TO WIDE LAYOUT | |
| st.set_page_config(layout="wide") | |
| #_______________________________________________SET VARIABLES_____________________________________________________ | |
| EMBEDDING = "all-MiniLM-L6-v2" | |
| COLLECTION_NAME = f'vb_summarizer_{EMBEDDING}_test' | |
| CHROMA_DATA_PATH = 'feedback_360' | |
| #_______________________________________________LOAD MODELS_____________________________________________________ | |
| # LOAD MODEL | |
| class LlamaLLM(LLM): | |
| model_path: str | |
| llm: Llama | |
| def _llm_type(self) -> str: | |
| return "llama-cpp-python" | |
| def __init__(self, model_path: str, **kwargs: Any): | |
| model_path = model_path | |
| llm = Llama(model_path=model_path) | |
| super().__init__(model_path=model_path, llm=llm, **kwargs) | |
| def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: | |
| response = self.llm(prompt, stop=stop or []) | |
| return response["choices"][0]["text"] | |
| def _identifying_params(self) -> Mapping[str, Any]: | |
| return {"model_path": self.model_path} | |
| def load_model(): | |
| llm_model = llama_cpp.Llama.from_pretrained( | |
| repo_id="TheBloke/toxicqa-Llama2-7B-GGUF", | |
| filename="toxicqa-llama2-7b.Q5_K_M.gguf", | |
| # repo_id="TheBloke/Llama-2-7b-Chat-GGUF", | |
| # filename="llama-2-7b-chat.Q4_K_M.gguf", | |
| #tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B"), | |
| embedding=True, | |
| verbose=False, | |
| n_ctx=1024, | |
| n_threads = 2, | |
| n_gpu_layers=0, # The number of layers to offload to GPU, if you have GPU acceleration available | |
| chat_format="llama-2", | |
| cache_dir='./model_cached' | |
| ) | |
| #from ctransformers import AutoModelForCausalLM | |
| # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. | |
| #from ctransformers import AutoModelForCausalLM | |
| #import ctransformers | |
| # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. | |
| #llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7b-Chat-GGUF", model_file="llama-2-7b-chat.q4_K_M.gguf", model_type="llama", gpu_layers=0) | |
| #llm = CTransformers(model = "TheBloke/Llama-2-7b-Chat-GGUF", model_file="llama-2-7b-chat.q4_K_M.gguf", model_type = 'llama') | |
| #print(llm("AI is going to")) | |
| return llm_model | |
| # LOAD VECTORSTORE | |
| def load_data(embedding) : | |
| # CREATE EMBEDDING | |
| embedding_function = SentenceTransformerEmbeddings(model_name=embedding) | |
| db3 = Chroma(collection_name = COLLECTION_NAME, persist_directory="./chroma", embedding_function = embedding_function) | |
| return db3 | |
| # Create a text element and let the reader know the data is loading. | |
| model_load_state = st.text('Loading model...') | |
| # Load 10,000 rows of data into the dataframe. | |
| llm_model = load_model() | |
| # Notify the reader that the data was successfully loaded. | |
| model_load_state.text('Loading model...done!') | |
| # Create a text element and let the reader know the data is loading. | |
| data_load_state = st.text('Loading data...') | |
| # Load 10,000 rows of data into the dataframe. | |
| vectorstore = load_data(EMBEDDING) | |
| # Notify the reader that the data was successfully loaded. | |
| data_load_state.text('Loading data...done!') | |
| # INFERENCE | |
| # def prompt_formatter(reviews, type_of_doc): | |
| # return f"""You are a summarization bot. | |
| # You will receive {type_of_doc} and you will extract all relevant information from {type_of_doc} and return one paragraph in which you will summarize what was said. | |
| # {type_of_doc} are listed below under inputs. | |
| # Inputs: {reviews} | |
| # Answer : | |
| # """ | |
| # def prompt_formatter(reviews): | |
| # return f"""You are a summarization bot. | |
| # You will an input and summarize in one paragraph the meaning of the input. | |
| # Do not quote from the input and do not repeat what was said in the input. | |
| # Do not make things up. | |
| # Input: {reviews} | |
| # Answer : | |
| # """ | |
| # def prompt_formatter(reviews): | |
| # return f"""You are a summarization bot. | |
| # You will receive reviews of Clockify from different users. | |
| # You will summarize what these reviews said while keeping the information about each of the user. | |
| # You will return the answer in the form : Review [number of review] : [summarization of review]. | |
| # Reviews are listed below. | |
| # Reviews: {reviews} | |
| # Answer : | |
| # """ | |
| # def prompt_formatter(reviews): | |
| # return f"""You are a summarization bot. | |
| # You will receive reviews of Clockify from different users. | |
| # You will create one paragraph with the summarization of what the reviews say about Clockify. | |
| # Reviews are listed below. | |
| # Do not make things up. Use only information from reviews. | |
| # Reviews: {reviews} | |
| # Answer : | |
| # """ | |
| def prompt_formatter(reviews): | |
| return f"""You are a summarization bot. | |
| You will receive reviews of Clockify from different users. | |
| You will summarize what are good and bad Clockify qualities according to all reviews. | |
| Reviews are listed below. | |
| Do not make things up. Use only information from reviews. | |
| Reviews: {reviews} | |
| Answer : | |
| """ | |
| def mirror_mirror(inputs, prompt_formatter): | |
| prompt = prompt_formatter(inputs) | |
| ######### LLAMA2_Q4 | |
| # response = llm_model.create_chat_completion( | |
| # messages=[ | |
| # { | |
| # "role": "user", | |
| # "content": prompt | |
| # } | |
| # ], | |
| # response_format={ | |
| # "type": "text", | |
| # }, | |
| # temperature = 0.4, | |
| # min_p = 0.01, | |
| # max_tokens = 256, | |
| # #presence_penalty = 100, | |
| # repeat_penalty = 2, | |
| # ) | |
| # output_text = response['choices'][0]['message']['content'] | |
| # TOXIQA-LLAMA2 | |
| response = llm_model( | |
| prompt, # Prompt | |
| max_tokens=512, # Generate up to 512 tokens | |
| stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. | |
| echo=True # Whether to echo the prompt | |
| ) | |
| print(response) | |
| output_text = response['choices'][0]['text'].replace(prompt,'') | |
| return prompt, output_text | |
| def summarization(example : list[str], results_df : pd.DataFrame = pd.DataFrame()) -> pd.DataFrame : | |
| # INFERENCE | |
| results = [] | |
| scores = [] | |
| for cnt in range(0,3) : | |
| print(cnt) | |
| prompt, result = mirror_mirror(example, prompt_formatter) | |
| example_embedded = np.array(llm_model.create_embedding(result)["data"][0]["embedding"]).reshape(1, -1) | |
| result_embedded = np.array(llm_model.create_embedding(example)["data"][0]["embedding"]).reshape(1, -1) | |
| score = cosine_similarity(example_embedded,result_embedded) | |
| scores.append(str(score[0][0])) | |
| if score>0.1 : | |
| fin_result = result | |
| max_score = score | |
| break | |
| #print(result) | |
| results.append(f'Summary{cnt} : '+result) | |
| max_score = max(scores) | |
| # save final result and its attributes | |
| try : | |
| fin_result | |
| except : | |
| fin_result = results[np.argmax(scores)] | |
| row = pd.DataFrame({'model' : 'llama_neka_cpp', 'prompt' : prompt, 'reviews' : example, 'summarization' : fin_result, 'scores' :[max_score] }) | |
| results_df = pd.concat([results_df,row], ignore_index = True) | |
| return results_df | |
| def create_filter(group:str=None, platform:str=None, ReviewerPosition:str=None, Industry:str=None, CompanySize:str=None, | |
| UsagePeriod:str=None, LinkedinVerified:str=None, Date:str=None, Rating:str=None) : | |
| keys = ['group', 'Platform', 'ReviewerPosition', 'Industry', 'CompanySize', | |
| 'UsagePeriod', 'LinkedinVerified', 'Date', 'Rating'] | |
| input_keys = [group,platform, ReviewerPosition, Industry, CompanySize, UsagePeriod, LinkedinVerified, Date, Rating] | |
| # create filter dict | |
| filter_dict = {} | |
| for key, in_key in zip(keys, input_keys) : | |
| if not in_key == None and not in_key == ' ': | |
| filter_dict[key] = {'$eq' : in_key} | |
| print(filter_dict) | |
| return filter_dict | |
| #_______________________________________________UI_____________________________________________________ | |
| st.title("Mirror, mirror, on the cloud, what do Clockify users say aloud?") | |
| st.subheader("--Clockify review summarizer--") | |
| col1, col2, col3 = st.columns(3, gap = 'small') | |
| with col1: | |
| platform = st.selectbox(label = 'Platform', | |
| options = [' ', 'Capterra', 'Chrome Extension', 'GetApp', 'AppStore', 'GooglePlay', | |
| 'Firefox Extension', 'JIRA Plugin', 'Trustpilot', 'G2', | |
| 'TrustRadius'] | |
| ) | |
| with col2: | |
| company_size = st.selectbox(label = 'Company Size', | |
| options = [' ', '1-10 employees', 'Self-employed', 'self-employed', | |
| 'Small-Business(50 or fewer emp.)', '51-200 employees', | |
| 'Mid-Market(51-1000 emp.)', '11-50 employees', | |
| '501-1,000 employees', '10,001+ employees', '201-500 employees', | |
| '1,001-5,000 employees', '5,001-10,000 employees', | |
| 'Enterprise(> 1000 emp.)', 'Unknown', '1001-5000 employees'] | |
| ) | |
| with col3: | |
| linkedin_verified = st.selectbox(label = 'Linkedin Verified', | |
| options = [' ', 'True', 'False'], | |
| placeholder = 'Choose an option' | |
| ) | |
| num_to_return = int(st.number_input(label = 'Number of documents to return', min_value = 2, max_value = 50, step = 1)) | |
| # group = st.selectbox(label = 'Review Platform Group', | |
| # options = ['Software Review Platforms', 'Browser Extension Stores', 'Mobile App Stores', 'Plugin Marketplace'] | |
| # ) | |
| default_value = "Clockify" | |
| query = st.text_area("Query", default_value, height = 50) | |
| #type_of_doc = st.text_area("Type of text", 'text', height = 25) | |
| # result = '' | |
| # score = '' | |
| # reviews = '' | |
| if 'result' not in st.session_state: | |
| st.session_state['result'] = '' | |
| if 'score' not in st.session_state: | |
| st.session_state['score'] = '' | |
| if 'reviews' not in st.session_state: | |
| st.session_state['reviews'] = '' | |
| col11, col21 = st.columns(2, gap = 'small') | |
| with col11: | |
| button_query = st.button('Conquer and query!') | |
| with col21: | |
| button_summarize = st.button('Summon the summarizer!') | |
| if button_query : | |
| print('Querying') | |
| # create filter from drop-downs | |
| filter_dict = create_filter(#group = group, | |
| platform = platform, | |
| CompanySize = company_size, | |
| LinkedinVerified = linkedin_verified | |
| ) | |
| # FILTER BY META | |
| if filter_dict == {} : | |
| retriever = vectorstore.as_retriever(search_kwargs = {"k": num_to_return}) | |
| elif len(filter_dict.keys()) == 1 : | |
| retriever = vectorstore.as_retriever(search_kwargs = {"k": num_to_return, | |
| "filter": filter_dict}) | |
| else : | |
| retriever = vectorstore.as_retriever(search_kwargs = {"k": num_to_return, | |
| "filter":{'$and': [{key : value} for key,value in filter_dict.items()]} | |
| } | |
| ) | |
| reviews = retriever.get_relevant_documents(query = query) | |
| # only get page content | |
| st.session_state['reviews'] = [f'Review {cnt} : {review.page_content}\n\n' for cnt,review in enumerate(reviews)] | |
| #print(st.session_state['reviews']) | |
| result = 'You may summarize now!' | |
| if button_summarize : | |
| print('Summarization in progress') | |
| st.session_state['result'] = 'Summarization in progress' | |
| results_df = summarization("\n".join(st.session_state['reviews'])) | |
| # only one input | |
| st.session_state['result'] = results_df.summarization[0] | |
| st.session_state['score'] = results_df.scores[0] | |
| col12, col22 = st.columns(2, gap = 'small') | |
| with col12: | |
| chosen_reviews = st.text_area("Reviews to be summarized", "\n".join(st.session_state['reviews']), height = 275) | |
| with col22: | |
| summarized_text = st.text_area("Summarized text", st.session_state['result'], height = 275) | |
| score = st.text_area("Cosine similarity score", st.session_state['score'], height = 25) | |