Spaces:
Paused
Paused
| import streamlit as st | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from transformers.utils import is_flash_attn_2_available | |
| from transformers import BitsAndBytesConfig | |
| import pandas as pd | |
| import os | |
| import torch | |
| import numpy as np | |
| from scipy import sparse | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| from scipy import sparse | |
| from langchain_community.vectorstores import Chroma | |
| from langchain_community.embeddings.sentence_transformer import ( | |
| SentenceTransformerEmbeddings, | |
| ) | |
| # SET TO WIDE LAYOUT | |
| st.set_page_config(layout="wide") | |
| #_______________________________________________SET VARIABLES_____________________________________________________ | |
| MODEL_ID = 'google/gemma-2b-it' | |
| CHUNK_SIZE = 1000 | |
| OVERLAP_SIZE = 100 | |
| EMBEDDING = "all-MiniLM-L6-v2" | |
| COLLECTION_NAME = f'vb_summarizer_{EMBEDDING}_test' | |
| CHROMA_DATA_PATH = 'feedback_360' | |
| #_______________________________________________LOAD MODELS_____________________________________________________ | |
| # LOAD MODEL | |
| def load_model(model_id) : | |
| HF_TOKEN = os.environ['HF_TOKEN'] | |
| print(torch.backends.mps.is_available()) | |
| #device = torch.device("mps") if torch.backends.mps.is_available() else "cpu" | |
| device = 'cpu' | |
| print(device) | |
| if device=='cpu' : | |
| print('Warning! No GPU available') | |
| # IMPORT MODEL | |
| print(model_id) | |
| quantization_config = BitsAndBytesConfig(load_in_4bit=True, | |
| bnb_4bit_compute_dtype=torch.float16) | |
| # if (is_flash_attn_2_available()) and (torch.cuda.get_device_capability(0)[0] >= 8): | |
| # attn_implementation = "flash_attention_2" | |
| # else: | |
| # attn_implementation = "sdpa" | |
| # print(f"[INFO] Using attention implementation: {attn_implementation}") | |
| tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=model_id, token=HF_TOKEN) | |
| llm_model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path=model_id, | |
| token=HF_TOKEN, | |
| torch_dtype=torch.float16, | |
| #quantization_config=quantization_config if quantization_config else None, | |
| low_cpu_mem_usage=False,) # use full memory | |
| #attn_implementation=attn_implementation) # which attention version to use | |
| llm_model.to(device) | |
| return llm_model, tokenizer, device | |
| # LOAD VECTORSTORE | |
| def load_data(embedding) : | |
| # CREATE EMBEDDING | |
| embedding_function = SentenceTransformerEmbeddings(model_name=embedding) | |
| db3 = Chroma(collection_name = COLLECTION_NAME, persist_directory="./chroma", embedding_function = embedding_function) | |
| return db3 | |
| # Create a text element and let the reader know the data is loading. | |
| model_load_state = st.text('Loading model...') | |
| # Load 10,000 rows of data into the dataframe. | |
| llm_model, tokenizer, device = load_model(MODEL_ID) | |
| # Notify the reader that the data was successfully loaded. | |
| model_load_state.text('Loading model...done!') | |
| # Create a text element and let the reader know the data is loading. | |
| data_load_state = st.text('Loading data...') | |
| # Load 10,000 rows of data into the dataframe. | |
| vectorstore = load_data(EMBEDDING) | |
| # Notify the reader that the data was successfully loaded. | |
| data_load_state.text('Loading data...done!') | |
| #_______________________________________________SUMMARIZATION_____________________________________________________ | |
| # INFERENCE | |
| # def prompt_formatter(reviews, type_of_doc): | |
| # return f"""You are a summarization bot. | |
| # You will receive {type_of_doc} and you will extract all relevant information from {type_of_doc} and return one paragraph in which you will summarize what was said. | |
| # {type_of_doc} are listed below under inputs. | |
| # Inputs: {reviews} | |
| # Answer : | |
| # """ | |
| # def prompt_formatter(reviews, type_of_doc): | |
| # return f"""You are a summarization bot. | |
| # You will receive {type_of_doc} and you will summarize what was said in the input. | |
| # {type_of_doc} are listed below under inputs. | |
| # Inputs: {reviews} | |
| # Answer : | |
| # """ | |
| def prompt_formatter(reviews): | |
| return f"""You are a summarization bot. | |
| You will receive reviews of Clockify from different users. | |
| You will summarize what these reviews said while keeping the information about each of the user. | |
| Reviews are listed below. | |
| Reviews: {reviews} | |
| Answer : | |
| """ | |
| def mirror_mirror(inputs, prompt_formatter, tokenizer): | |
| print('Mirror_mirror') | |
| prompt = prompt_formatter(inputs) | |
| input_ids = tokenizer(prompt, return_tensors="pt").to(device) | |
| outputs = llm_model.generate(**input_ids, | |
| temperature=0.3, | |
| do_sample=True, | |
| max_new_tokens=275) | |
| output_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return prompt, output_text.replace(prompt, '') | |
| def summarization(example : str, results_df : pd.DataFrame = pd.DataFrame()) -> pd.DataFrame : | |
| # INFERENCE | |
| results = [] | |
| for cnt in range(0,2) : | |
| prompt, result = mirror_mirror(example, prompt_formatter, tokenizer) | |
| list_temp = [result, example] | |
| tokenized = tokenizer(list_temp, return_tensors="pt", padding = True) | |
| A = tokenized.input_ids.numpy() | |
| A = sparse.csr_matrix(A) | |
| score = cosine_similarity(A)[0,1] | |
| #print(cosine_similarity(A)[0,1]) | |
| #print(cosine_similarity(A)[1,0]) | |
| print(score) | |
| if score>0.1 : | |
| fin_result = result | |
| max_score = score | |
| break | |
| results.append(result) | |
| #print(result+'\n\n') | |
| # tokenize results and example together | |
| try : | |
| fin_result | |
| except : | |
| # if fin_result not already defined, use the best of available results | |
| # add example to results so tokenization is done together (due to padding limitations) | |
| results.append(example) | |
| tokenized = tokenizer(results, return_tensors="pt", padding = True) | |
| A = tokenized.input_ids.numpy() | |
| A = sparse.csr_matrix(A) | |
| # calculate cosine similarity of each pair | |
| # keep only example X result column | |
| scores = cosine_similarity(A)[:,2] | |
| # final result is the one with greaters cos_score | |
| fin_result = results[np.argmax(scores)] | |
| max_score = max(scores) | |
| #print(fin_result) | |
| # save final result and its attributes | |
| row = pd.DataFrame({'model' : MODEL_ID, 'prompt' : prompt, 'reviews' : example, 'summarization' : fin_result, 'score' : [max_score] }) | |
| results_df = pd.concat([results_df,row], ignore_index = True) | |
| return results_df | |
| def create_filter(group:str=None, platform:str=None, ReviewerPosition:str=None, Industry:str=None, CompanySize:str=None, | |
| UsagePeriod:str=None, LinkedinVerified:str=None, Date:str=None, Rating:str=None) : | |
| keys = ['group', 'Platform', 'ReviewerPosition', 'Industry', 'CompanySize', | |
| 'UsagePeriod', 'LinkedinVerified', 'Date', 'Rating'] | |
| input_keys = [group,platform, ReviewerPosition, Industry, CompanySize, UsagePeriod, LinkedinVerified, Date, Rating] | |
| # create filter dict | |
| filter_dict = {} | |
| for key, in_key in zip(keys, input_keys) : | |
| if not in_key == None and not in_key == ' ': | |
| filter_dict[key] = {'$eq' : in_key} | |
| print(filter_dict) | |
| return filter_dict | |
| #_______________________________________________UI_____________________________________________________ | |
| st.title("Mirror, mirror, on the cloud, what do Clockify users say aloud?") | |
| st.subheader("--Clockify review summarizer--") | |
| col1, col2, col3 = st.columns(3, gap = 'small') | |
| with col1: | |
| platform = st.selectbox(label = 'Platform', | |
| options = [' ', 'Capterra', 'Chrome Extension', 'GetApp', 'AppStore', 'GooglePlay', | |
| 'Firefox Extension', 'JIRA Plugin', 'Trustpilot', 'G2', | |
| 'TrustRadius'] | |
| ) | |
| with col2: | |
| company_size = st.selectbox(label = 'Company Size', | |
| options = [' ', '1-10 employees', 'Self-employed', 'self-employed', | |
| 'Small-Business(50 or fewer emp.)', '51-200 employees', | |
| 'Mid-Market(51-1000 emp.)', '11-50 employees', | |
| '501-1,000 employees', '10,001+ employees', '201-500 employees', | |
| '1,001-5,000 employees', '5,001-10,000 employees', | |
| 'Enterprise(> 1000 emp.)', 'Unknown', '1001-5000 employees'] | |
| ) | |
| with col3: | |
| linkedin_verified = st.selectbox(label = 'Linkedin Verified', | |
| options = [' ', 'True', 'False'], | |
| placeholder = 'Choose an option' | |
| ) | |
| num_to_return = int(st.number_input(label = 'Number of documents to return', min_value = 2, max_value = 50, step = 1)) | |
| # group = st.selectbox(label = 'Review Platform Group', | |
| # options = ['Software Review Platforms', 'Browser Extension Stores', 'Mobile App Stores', 'Plugin Marketplace'] | |
| # ) | |
| default_value = "Clockify" | |
| query = st.text_area("Query", default_value, height = 50) | |
| #type_of_doc = st.text_area("Type of text", 'text', height = 25) | |
| # result = '' | |
| # score = '' | |
| # reviews = '' | |
| if 'result' not in st.session_state: | |
| st.session_state['result'] = '' | |
| if 'score' not in st.session_state: | |
| st.session_state['score'] = '' | |
| if 'reviews' not in st.session_state: | |
| st.session_state['reviews'] = '' | |
| col11, col21 = st.columns(2, gap = 'small') | |
| with col11: | |
| button_query = st.button('Conquer and query!') | |
| with col21: | |
| button_summarize = st.button('Summon the summarizer!') | |
| if button_query : | |
| print('Querying') | |
| # create filter from drop-downs | |
| filter_dict = create_filter(#group = group, | |
| platform = platform, | |
| CompanySize = company_size, | |
| LinkedinVerified = linkedin_verified | |
| ) | |
| # FILTER BY META | |
| if filter_dict == {} : | |
| retriever = vectorstore.as_retriever(search_kwargs = {"k": num_to_return}) | |
| elif len(filter_dict.keys()) == 1 : | |
| retriever = vectorstore.as_retriever(search_kwargs = {"k": num_to_return, | |
| "filter": filter_dict}) | |
| else : | |
| retriever = vectorstore.as_retriever(search_kwargs = {"k": num_to_return, | |
| "filter":{'$and': [{key : value} for key,value in filter_dict.items()]} | |
| } | |
| ) | |
| reviews = retriever.get_relevant_documents(query = query) | |
| # only get page content | |
| st.session_state['reviews'] = [review.page_content for review in reviews] | |
| print(st.session_state['reviews']) | |
| result = 'You may summarize now!' | |
| if button_summarize : | |
| print('Summarization in progress') | |
| st.session_state['result'] = 'Summarization in progress' | |
| results_df = summarization("\n".join(st.session_state['reviews'])) | |
| # only one input | |
| st.session_state['result'] = results_df.summarization[0] | |
| score = results_df.score[0] | |
| col12, col22 = st.columns(2, gap = 'small') | |
| with col12: | |
| chosen_reviews = st.text_area("Reviews to be summarized", "\n".join(st.session_state['reviews']), height = 275) | |
| with col22: | |
| summarized_text = st.text_area("Summarized text", st.session_state['result'], height = 275) | |
| score = st.text_area("Cosine similarity score", st.session_state['score'], height = 25) | |
| # max_length = st.sidebar.slider("Max Length", min_value = 10, max_value=30) | |
| # temperature = st.sidebar.slider("Temperature", value = 1.0, min_value = 0.0, max_value=1.0, step=0.05) | |
| # top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 0) | |
| # top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.9) | |
| # num_return_sequences = st.sidebar.number_input('Number of Return Sequences', min_value=1, max_value=5, value=1, step=1)s |