jamesoncrate commited on
Commit
2242fb6
·
1 Parent(s): 37f4150

fix tensor mismatch

Browse files
Files changed (1) hide show
  1. app.py +17 -5
app.py CHANGED
@@ -4,6 +4,7 @@ import torch
4
  from diffusers import DiffusionPipeline
5
  from transformers import T5EncoderModel
6
  import tempfile
 
7
 
8
  # Global variable to store the text pipeline
9
  text_pipe = None
@@ -15,7 +16,6 @@ def load_model():
15
  print("Loading T5 text encoder...")
16
 
17
  # Get token from environment
18
- import os
19
  token = os.getenv("HF_TOKEN")
20
 
21
  text_encoder = T5EncoderModel.from_pretrained(
@@ -24,13 +24,14 @@ def load_model():
24
  load_in_8bit=True,
25
  variant="8bit",
26
  device_map="auto",
27
- token=token # Add this line
28
  )
29
  text_pipe = DiffusionPipeline.from_pretrained(
30
  "DeepFloyd/IF-I-L-v1.0",
31
  text_encoder=text_encoder,
32
  unet=None,
33
- token=token # Add this line
 
34
  )
35
  print("Model loaded successfully!")
36
  return text_pipe
@@ -48,6 +49,12 @@ def generate_embeddings(prompts_text):
48
  # Load model if not already loaded
49
  pipe = load_model()
50
 
 
 
 
 
 
 
51
  # Parse prompts (one per line)
52
  prompts = [p.strip() for p in prompts_text.strip().split('\n') if p.strip()]
53
 
@@ -68,8 +75,11 @@ def generate_embeddings(prompts_text):
68
  # Extract positive prompt embeddings
69
  prompt_embeds, negative_prompt_embeds = zip(*prompt_embeds_list)
70
 
 
 
 
71
  # Create dictionary
72
- prompt_embeds_dict = dict(zip(prompts, prompt_embeds))
73
 
74
  # Save to temporary file
75
  temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.pth')
@@ -83,7 +93,9 @@ def generate_embeddings(prompts_text):
83
  return temp_file.name, status_msg
84
 
85
  except Exception as e:
86
- return None, f"❌ Error: {str(e)}"
 
 
87
 
88
  # Create Gradio interface
89
  with gr.Blocks(title="T5 Text Encoder - Embeddings Generator") as demo:
 
4
  from diffusers import DiffusionPipeline
5
  from transformers import T5EncoderModel
6
  import tempfile
7
+ import os
8
 
9
  # Global variable to store the text pipeline
10
  text_pipe = None
 
16
  print("Loading T5 text encoder...")
17
 
18
  # Get token from environment
 
19
  token = os.getenv("HF_TOKEN")
20
 
21
  text_encoder = T5EncoderModel.from_pretrained(
 
24
  load_in_8bit=True,
25
  variant="8bit",
26
  device_map="auto",
27
+ token=token
28
  )
29
  text_pipe = DiffusionPipeline.from_pretrained(
30
  "DeepFloyd/IF-I-L-v1.0",
31
  text_encoder=text_encoder,
32
  unet=None,
33
+ token=token,
34
+ device_map="auto" # Add this
35
  )
36
  print("Model loaded successfully!")
37
  return text_pipe
 
49
  # Load model if not already loaded
50
  pipe = load_model()
51
 
52
+ # Move pipeline to CUDA if available
53
+ if torch.cuda.is_available():
54
+ device = torch.device("cuda")
55
+ if hasattr(pipe, 'text_encoder') and pipe.text_encoder is not None:
56
+ pipe.text_encoder = pipe.text_encoder.to(device)
57
+
58
  # Parse prompts (one per line)
59
  prompts = [p.strip() for p in prompts_text.strip().split('\n') if p.strip()]
60
 
 
75
  # Extract positive prompt embeddings
76
  prompt_embeds, negative_prompt_embeds = zip(*prompt_embeds_list)
77
 
78
+ # Move embeddings to CPU before saving
79
+ prompt_embeds_cpu = [emb.cpu() if isinstance(emb, torch.Tensor) else emb for emb in prompt_embeds]
80
+
81
  # Create dictionary
82
+ prompt_embeds_dict = dict(zip(prompts, prompt_embeds_cpu))
83
 
84
  # Save to temporary file
85
  temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.pth')
 
93
  return temp_file.name, status_msg
94
 
95
  except Exception as e:
96
+ import traceback
97
+ error_details = traceback.format_exc()
98
+ return None, f"❌ Error: {str(e)}\n\nDetails:\n{error_details}"
99
 
100
  # Create Gradio interface
101
  with gr.Blocks(title="T5 Text Encoder - Embeddings Generator") as demo: