File size: 12,600 Bytes
f6feac1
fc7b4a9
 
 
97eaafb
0534c29
fc7b4a9
 
97eaafb
fc7b4a9
97eaafb
 
 
 
 
 
 
 
 
 
 
 
 
 
fc7b4a9
 
 
f6feac1
 
 
 
 
 
fc7b4a9
0534c29
fc7b4a9
 
253a78c
fc7b4a9
 
 
 
f6feac1
fc7b4a9
 
 
 
 
 
 
 
f6feac1
 
fc7b4a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6feac1
fc7b4a9
 
 
97eaafb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0534c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os
import numpy as np
from datetime import datetime
from src.musiclime.explainer import MusicLIMEExplainer
from src.musiclime.wrapper import MusicLIMEPredictor, AudioOnlyPredictor
from src.musiclime.print_utils import green_bold


def musiclime_multimodal(audio_data, lyrics_text):
    """
    Generate multimodal MusicLIME explanations for audio and lyrics.

    Parameters
    ----------
    audio_data : array-like
        Audio waveform data from librosa.load or similar
    lyrics_text : str
        String containing song lyrics

    Returns
    -------
    dict
        Structured explanation results containing prediction info, feature explanations,
        and processing metadata
    """
    start_time = datetime.now()

    # Get number of samples from environment variable, default to 1000
    num_samples = int(os.getenv("MUSICLIME_NUM_SAMPLES", "1000"))
    num_features = int(os.getenv("MUSICLIME_NUM_FEATURES", "10"))

    print(f"[MusicLIME] Using num_samples={num_samples}, num_features={num_features}")

    # Create musiclime instances
    explainer = MusicLIMEExplainer(random_state=42)
    predictor = MusicLIMEPredictor()

    # Then generate explanations
    explanation = explainer.explain_instance(
        audio=audio_data,
        lyrics=lyrics_text,
        predict_fn=predictor,
        num_samples=num_samples,
        labels=(1,),
    )

    # Get prediction info
    original_prediction = explanation.predictions[0]
    predicted_class = np.argmax(original_prediction)
    confidence = float(np.max(original_prediction))

    # Get top features (I also made this configurable to prevent rebuilding)
    top_features = explanation.get_explanation(label=1, num_features=num_features)

    # Calculate runtime
    end_time = datetime.now()
    runtime_seconds = (end_time - start_time).total_seconds()

    return {
        "prediction": {
            "class": int(predicted_class),
            "class_name": "Human-Composed" if predicted_class == 1 else "AI-Generated",
            "confidence": confidence,
            "probabilities": original_prediction.tolist(),
        },
        "explanations": [
            {
                "rank": i + 1,
                "modality": item["type"],
                "feature_text": item["feature"],
                "weight": float(item["weight"]),
                "importance": abs(float(item["weight"])),
            }
            for i, item in enumerate(top_features)
        ],
        "summary": {
            "total_features_analyzed": len(top_features),
            "audio_features_count": len(
                [f for f in top_features if f["type"] == "audio"]
            ),
            "lyrics_features_count": len(
                [f for f in top_features if f["type"] == "lyrics"]
            ),
            "runtime_seconds": runtime_seconds,
            "samples_generated": num_samples,
            "timestamp": start_time.isoformat(),
        },
    }


def musiclime_unimodal(audio_data, modality="audio"):
    """
    Generate unimodal MusicLIME explanations for single modality.

    Parameters
    ----------
    audio_data : array-like
        Audio waveform data from librosa.load or similar
    modality : str, default='audio'
        Explanation modality, currently only supports 'audio'

    Returns
    -------
    dict
        Structured explanation results containing prediction info, audio-only feature
        explanations, and processing metadata

    Raises
    ------
    ValueError
        If modality is not 'audio' (lyrics is not yet implemented)
    """
    if modality != "audio":
        raise ValueError(
            "Currently only 'audio' modality is supported for unimodal explanations"
        )

    start_time = datetime.now()

    # Get number of samples from environment variable, default to 1000
    num_samples = int(os.getenv("MUSICLIME_NUM_SAMPLES", "1000"))
    num_features = int(os.getenv("MUSICLIME_NUM_FEATURES", "10"))

    print(
        f"[MusicLIME] Using num_samples={num_samples}, num_features={num_features} (audio-only mode)"
    )

    # Create musiclime instances
    explainer = MusicLIMEExplainer(random_state=42)
    predictor = AudioOnlyPredictor()

    # Use empty lyrics for audio-only since they're ignored anyways
    dummy_lyrics = ""

    # Generate explanation
    explanation = explainer.explain_instance(
        audio=audio_data,
        lyrics=dummy_lyrics,
        predict_fn=predictor,
        num_samples=num_samples,
        labels=(1,),
        modality=modality,
    )

    # Get prediction info
    original_prediction = explanation.predictions[0]
    predicted_class = np.argmax(original_prediction)
    confidence = float(np.max(original_prediction))

    # Get top features
    top_features = explanation.get_explanation(label=1, num_features=num_features)

    # Calculate runtime
    end_time = datetime.now()
    runtime_seconds = (end_time - start_time).total_seconds()

    return {
        "prediction": {
            "class": int(predicted_class),
            "class_name": "Human-Composed" if predicted_class == 1 else "AI-Generated",
            "confidence": confidence,
            "probabilities": original_prediction.tolist(),
        },
        "explanations": [
            {
                "rank": i + 1,
                "modality": item["type"],  # "audio" for all features
                "feature_text": item["feature"],
                "weight": float(item["weight"]),
                "importance": abs(float(item["weight"])),
            }
            for i, item in enumerate(top_features)
        ],
        "summary": {
            "total_features_analyzed": len(top_features),
            "audio_features_count": len(top_features),  # All features are audio
            "lyrics_features_count": 0,  # No lyrics features
            "runtime_seconds": runtime_seconds,
            "samples_generated": num_samples,
            "timestamp": start_time.isoformat(),
        },
    }


def musiclime_combined(audio_data, lyrics_text):
    """
    Generate both multimodal and audio-only MusicLIME explanations efficiently.

    Performs source separation once and generates both explanation types
    to reduce total processing time by ~50% compared to separate calls.

    Parameters
    ----------
    audio_data : array-like
        Audio waveform data from librosa.load or similar
    lyrics_text : str
        String containing song lyrics

    Returns
    -------
    dict
        Combined results containing both multimodal and audio-only explanations
    """
    from src.musiclime.factorization import OpenUnmixFactorization
    from src.musiclime.text_utils import LineIndexedString

    start_time = datetime.now()

    # Get configuration
    num_samples = int(os.getenv("MUSICLIME_NUM_SAMPLES", "1000"))
    num_features = int(os.getenv("MUSICLIME_NUM_FEATURES", "10"))

    print(
        "[MusicLIME] Combined mode: generating both multimodal and audio-only explanations"
    )
    print(f"[MusicLIME] Using num_samples={num_samples}, num_features={num_features}")

    # Create factorizations once
    print("[MusicLIME] Creating factorizations once for both explanations...")
    factorization_start = datetime.now()

    audio_factorization = OpenUnmixFactorization(
        audio_data, temporal_segmentation_params=10
    )
    text_factorization = LineIndexedString(lyrics_text)

    factorization_time = (datetime.now() - factorization_start).total_seconds()
    print(
        green_bold(f"[MusicLIME] Factorization completed in {factorization_time:.2f}s")
    )

    # Create explainer and predictors
    explainer = MusicLIMEExplainer(random_state=42)
    multimodal_predictor = MusicLIMEPredictor()
    audio_predictor = AudioOnlyPredictor()

    # Generate multimodal explanation (reusing factorizations)
    print("[MusicLIME] Generating multimodal explanation...")
    multimodal_start = datetime.now()

    multimodal_explanation = explainer.explain_instance_with_factorization(
        audio_factorization,
        text_factorization,
        multimodal_predictor,
        num_samples=num_samples,
        labels=(1,),
        modality="both",
    )

    multimodal_time = (datetime.now() - multimodal_start).total_seconds()
    print(
        green_bold(
            f"[MusicLIME] Multimodal explanation completed in {multimodal_time:.2f}s"
        )
    )

    # Generate audio-only explanation (reusing the same factorization)
    print("[MusicLIME] Generating audio-only explanation (reusing factorizations)...")
    audio_start = datetime.now()

    audio_explanation = explainer.explain_instance_with_factorization(
        audio_factorization,
        text_factorization,
        audio_predictor,
        num_samples=num_samples,
        labels=(1,),
        modality="audio",
    )

    audio_time = (datetime.now() - audio_start).total_seconds()
    print(
        green_bold(f"[MusicLIME] Audio-only explanation completed in {audio_time:.2f}s")
    )

    # Process multimodal results
    multimodal_prediction = multimodal_explanation.predictions[0]
    multimodal_class = np.argmax(multimodal_prediction)
    multimodal_confidence = float(np.max(multimodal_prediction))
    multimodal_features = multimodal_explanation.get_explanation(
        label=1, num_features=num_features
    )

    # Process audio-only results
    audio_prediction = audio_explanation.predictions[0]
    audio_class = np.argmax(audio_prediction)
    audio_confidence = float(np.max(audio_prediction))
    audio_features = audio_explanation.get_explanation(
        label=1, num_features=num_features
    )

    # Calculate total runtime
    end_time = datetime.now()
    total_runtime = (end_time - start_time).total_seconds()

    print(green_bold("[MusicLIME] Combined explanation completed!"))
    print(f"[MusicLIME] Factorization: {factorization_time:.2f}s (done once)")
    print(f"[MusicLIME] Multimodal: {multimodal_time:.2f}s")
    print(f"[MusicLIME] Audio-only: {audio_time:.2f}s")
    print(f"[MusicLIME] Total: {total_runtime:.2f}s")

    return {
        "multimodal": {
            "prediction": {
                "class": int(multimodal_class),
                "class_name": (
                    "Human-Composed" if multimodal_class == 1 else "AI-Generated"
                ),
                "confidence": multimodal_confidence,
                "probabilities": multimodal_prediction.tolist(),
            },
            "explanations": [
                {
                    "rank": i + 1,
                    "modality": item["type"],
                    "feature_text": item["feature"],
                    "weight": float(item["weight"]),
                    "importance": abs(float(item["weight"])),
                }
                for i, item in enumerate(multimodal_features)
            ],
            "summary": {
                "total_features_analyzed": len(multimodal_features),
                "audio_features_count": len(
                    [f for f in multimodal_features if f["type"] == "audio"]
                ),
                "lyrics_features_count": len(
                    [f for f in multimodal_features if f["type"] == "lyrics"]
                ),
                "runtime_seconds": multimodal_time,
                "samples_generated": num_samples,
            },
        },
        "audio_only": {
            "prediction": {
                "class": int(audio_class),
                "class_name": "Human-Composed" if audio_class == 1 else "AI-Generated",
                "confidence": audio_confidence,
                "probabilities": audio_prediction.tolist(),
            },
            "explanations": [
                {
                    "rank": i + 1,
                    "modality": item["type"],
                    "feature_text": item["feature"],
                    "weight": float(item["weight"]),
                    "importance": abs(float(item["weight"])),
                }
                for i, item in enumerate(audio_features)
            ],
            "summary": {
                "total_features_analyzed": len(audio_features),
                "audio_features_count": len(audio_features),
                "lyrics_features_count": 0,
                "runtime_seconds": audio_time,
                "samples_generated": num_samples,
            },
        },
        "combined_summary": {
            "total_runtime_seconds": total_runtime,
            "factorization_time_seconds": factorization_time,
            "source_separation_reused": True,
            "timestamp": start_time.isoformat(),
        },
    }