Spaces:
Sleeping
Sleeping
| import librosa | |
| from scripts.explain import musiclime_combined | |
| def explain_combined_runner(sample: str): | |
| # Load test audio and lyrics | |
| audio_path = f"data/external/{sample}.mp3" | |
| lyrics_path = f"data/external/{sample}.txt" | |
| # Load audio | |
| audio_data, sr = librosa.load(audio_path) | |
| # Load lyrics | |
| with open(lyrics_path, "r", encoding="utf-8") as f: | |
| lyrics_text = f.read() | |
| print("Running combined MusicLIME explanation (optimized)...") | |
| result = musiclime_combined(audio_data, lyrics_text) | |
| # Display multimodal results | |
| print(f"\n{'='*60}") | |
| print("=== MULTIMODAL EXPLANATION RESULTS ===") | |
| print(f"{'='*60}") | |
| multimodal = result["multimodal"] | |
| print( | |
| f"Prediction: {multimodal['prediction']['class_name']} ({multimodal['prediction']['confidence']:.3f})" | |
| ) | |
| print(f"Runtime: {multimodal['summary']['runtime_seconds']:.2f}s") | |
| print("\n=== TOP MULTIMODAL FEATURES ===") | |
| for feature in multimodal["explanations"]: | |
| print( | |
| f"Rank {feature['rank']}: {feature['modality']} | Weight: {feature['weight']:.4f} | Importance: {feature['importance']:.4f}" | |
| ) | |
| print(f" Feature: {feature['feature_text'][:80]}...") | |
| print() | |
| # Display audio-only results | |
| print(f"\n{'='*60}") | |
| print("=== AUDIO-ONLY EXPLANATION RESULTS ===") | |
| print(f"{'='*60}") | |
| audio_only = result["audio_only"] | |
| print( | |
| f"Prediction: {audio_only['prediction']['class_name']} ({audio_only['prediction']['confidence']:.3f})" | |
| ) | |
| print(f"Runtime: {audio_only['summary']['runtime_seconds']:.2f}s") | |
| print("\n=== TOP AUDIO-ONLY FEATURES ===") | |
| for feature in audio_only["explanations"]: | |
| print( | |
| f"Rank {feature['rank']}: {feature['modality']} | Weight: {feature['weight']:.4f} | Importance: {feature['importance']:.4f}" | |
| ) | |
| print(f" Feature: {feature['feature_text'][:80]}...") | |
| print() | |
| # Display performance summary | |
| print(f"\n{'='*60}") | |
| print("=== PERFORMANCE SUMMARY ===") | |
| print(f"{'='*60}") | |
| summary = result["combined_summary"] | |
| print( | |
| f"Factorization time: {summary['factorization_time_seconds']:.2f}s (done once)" | |
| ) | |
| print(f"Multimodal explanation: {multimodal['summary']['runtime_seconds']:.2f}s") | |
| print(f"Audio-only explanation: {audio_only['summary']['runtime_seconds']:.2f}s") | |
| print(f"Total runtime: {summary['total_runtime_seconds']:.2f}s") | |
| print(f"Source separation reused: {summary['source_separation_reused']}") | |
| # Comparison | |
| print("\n=== PREDICTION COMPARISON ===") | |
| print( | |
| f"Multimodal: {multimodal['prediction']['class_name']} ({multimodal['prediction']['confidence']:.3f})" | |
| ) | |
| print( | |
| f"Audio-only: {audio_only['prediction']['class_name']} ({audio_only['prediction']['confidence']:.3f})" | |
| ) | |
| if multimodal["prediction"]["class"] == audio_only["prediction"]["class"]: | |
| print("Both modalities agree on the prediction") | |
| else: | |
| print("Modalities disagree on the prediction") | |
| confidence_diff = abs( | |
| multimodal["prediction"]["confidence"] - audio_only["prediction"]["confidence"] | |
| ) | |
| print(f"Confidence difference: {confidence_diff:.3f}") | |
| if __name__ == "__main__": | |
| sample = "sample" | |
| explain_combined_runner(sample) | |