bach-or-bot / src /musiclime /explainer.py
krislette's picture
Auto-deploy from GitHub: bb659763110ffbe4c2a85e186bebb84edb7010de
0534c29
import json
import numpy as np
import sklearn.metrics
import time
from functools import partial
from sklearn.utils import check_random_state
from lime.lime_base import LimeBase
from pathlib import Path
from datetime import datetime
from src.musiclime.text_utils import LineIndexedString
from src.musiclime.factorization import OpenUnmixFactorization
from src.musiclime.print_utils import green_bold
class MusicLIMEExplainer:
"""
LIME-based explainer for multimodal music classification models.
Generates local explanations for AI vs Human music classification by
perturbing audio (source separation) and lyrics (line removal) components
and analyzing their impact on model predictions.
Attributes
----------
random_state : RandomState
Random number generator for reproducible perturbations
base : LimeBase
Core LIME explanation engine with exponential kernel
"""
def __init__(self, kernel_width=25, random_state=None):
"""
Initialize MusicLIME explainer with kernel parameters.
Parameters
----------
kernel_width : int, default=25
Width parameter for the exponential kernel function
random_state : int or RandomState, optional
Random seed for reproducible perturbations
"""
self.random_state = check_random_state(random_state)
def kernel(d, kernel_width):
return np.sqrt(np.exp(-(d**2) / kernel_width**2))
kernel_fn = partial(kernel, kernel_width=kernel_width)
self.base = LimeBase(kernel_fn, verbose=False)
def explain_instance(
self,
audio,
lyrics,
predict_fn,
num_samples=1000,
labels=(1,),
temporal_segments=10,
modality="both",
):
"""
Generate LIME explanations for a music instance using audio and/or lyrics.
This method creates local explanations by perturbing audio components (via source
separation) and/or lyrics lines, then analyzing their impact on model predictions.
Supports three modality modes: 'both' (multimodal), 'audio' (audio-only), and
'lyrical' (lyrics-only) following the original MusicLIME paper implementation.
Parameters
----------
audio : array-like
Raw audio waveform data
lyrics : str
Song lyrics as text string
predict_fn : callable
Prediction function that takes (texts, audios) and returns probabilities (wrapper)
num_samples : int, default=1000
Number of perturbed samples to generate for LIME
labels : tuple, default=(1,)
Target labels to explain (0=AI-Generated, 1=Human-Composed)
temporal_segments : int, default=10
Number of temporal segments for audio factorization
modality : str, default='both'
Explanation modality: 'both' (multimodal), 'audio' (audio-only), or 'lyrical' (lyrics-only)
Returns
-------
MusicLIMEExplanation
Explanation object containing feature importance weights and metadata
"""
# Validation for modality choice
if modality not in ["both", "audio", "lyrical"]:
raise ValueError("Set modality argument to 'both', 'audio', 'lyrical'.")
# These are for debugging only I have to see THAT progress
print("[MusicLIME] Starting MusicLIME explanation...")
print(
f"[MusicLIME] Audio length: {len(audio)/22050:.1f}s, Temporal segments: {temporal_segments}"
)
print(f"[MusicLIME] Lyrics lines: {len(lyrics.split(chr(10)))}")
print("[MusicLIME] Starting MusicLIME explanation...")
print(f"[MusicLIME] Modality: {modality}")
# Create factorizations
print("[MusicLIME] Creating audio factorization (source separation)...")
audio_factorization = OpenUnmixFactorization(
audio, temporal_segmentation_params=temporal_segments
)
print(
f"[MusicLIME] Audio components: {audio_factorization.get_number_components()}"
)
start_time = time.time()
print("[MusicLIME] Processing lyrics...")
text_factorization = LineIndexedString(lyrics)
print(f"[MusicLIME] Text lines: {text_factorization.num_words()}")
text_processing_time = time.time() - start_time
print(
green_bold(
f"[MusicLIME] Lyrics processing completed in {text_processing_time:.2f}s"
)
)
# Generate perturbations and get predictions
print(f"[MusicLIME] Generating {num_samples} perturbations...")
data, predictions, distances = self._generate_neighborhood(
audio_factorization, text_factorization, predict_fn, num_samples, modality
)
# LIME fitting, create explanation object
start_time = time.time()
print("[MusicLIME] Fitting LIME model...")
explanation = MusicLIMEExplanation(
audio_factorization, text_factorization, data, predictions
)
for label in labels:
print(f"[MusicLIME] Explaining label {label}...")
(
explanation.intercept[label],
explanation.local_exp[label],
explanation.score[label],
explanation.local_pred[label],
) = self.base.explain_instance_with_data(
data, predictions, distances, label, num_features=20
)
lime_time = time.time() - start_time
print(
green_bold(f"[MusicLIME] LIME model fitting completed in {lime_time:.2f}s")
)
print("[MusicLIME] MusicLIME explanation complete!")
return explanation
def explain_instance_with_factorization(
self,
audio_factorization,
text_factorization,
predict_fn,
num_samples=1000,
labels=(1,),
modality="both",
):
"""
Generate LIME explanations using pre-computed factorizations.
This method allows reusing expensive source separation across multiple explanations,
which significantly improves performance when generating both multimodal and audio-only
explanations for the same audio file.
Parameters
----------
audio_factorization : OpenUnmixFactorization
Pre-computed audio source separation components
text_factorization : LineIndexedString
Pre-computed text line factorization
predict_fn : callable
Prediction function that takes (texts, audios) and returns probabilities
num_samples : int, default=1000
Number of perturbed samples to generate for LIME
labels : tuple, default=(1,)
Target labels to explain (0=AI-Generated, 1=Human-Composed)
modality : str, default='both'
Explanation modality: 'both', 'audio', or 'lyrical'
Returns
-------
MusicLIMEExplanation
Explanation object containing feature importance weights and metadata
Raises
------
ValueError
If modality is not one of ['both', 'audio', 'lyrical']
"""
# Validate modality
if modality not in ["both", "audio", "lyrical"]:
raise ValueError('Set modality argument to "both", "audio" or "lyrical".')
print("[MusicLIME] Using pre-computed factorizations (optimized mode)")
print(f"[MusicLIME] Modality: {modality}")
print(
f"[MusicLIME] Audio components: {audio_factorization.get_number_components()}"
)
print(f"[MusicLIME] Text lines: {text_factorization.num_words()}")
# Generate perturbations and get predictions
print(f"[MusicLIME] Generating {num_samples} perturbations...")
data, predictions, distances = self._generate_neighborhood(
audio_factorization, text_factorization, predict_fn, num_samples, modality
)
# LIME fitting, create explanation object
start_time = time.time()
print("[MusicLIME] Fitting LIME model...")
explanation = MusicLIMEExplanation(
audio_factorization,
text_factorization,
data,
predictions,
)
for label in labels:
print(f"[MusicLIME] Explaining label {label}...")
(
explanation.intercept[label],
explanation.local_exp[label],
explanation.score[label],
explanation.local_pred[label],
) = self.base.explain_instance_with_data(
data, predictions, distances, label, num_features=20
)
lime_time = time.time() - start_time
print(green_bold(f"[MusicLIME] LIME fitting completed in {lime_time:.2f}s"))
print("[MusicLIME] MusicLIME explanation complete!")
return explanation
def _generate_neighborhood(
self, audio_fact, text_fact, predict_fn, num_samples, modality="both"
):
"""
Generate perturbed samples and predictions for LIME explanation based on modality.
Creates binary perturbation masks and generates corresponding perturbed audio-text
pairs. The perturbation strategy depends on the specified modality:
- 'both': Perturbs both audio components and lyrics lines independently
- 'audio': Perturbs only audio components, keeps original lyrics constant
- 'lyrical': Perturbs only lyrics lines, keeps original audio constant
Parameters
----------
audio_fact : OpenUnmixFactorization
Audio factorization object for source separation-based perturbations
text_fact : LineIndexedString
Text factorization object for line-based lyrics perturbations
predict_fn : callable
Model prediction function that processes (texts, audios) batches
num_samples : int
Number of perturbation samples to generate for LIME
modality : str, default='both'
Perturbation modality: 'both', 'audio', or 'lyrical'
Returns
-------
data : ndarray
Binary perturbation masks of shape (num_samples, total_features)
predictions : ndarray
Model predictions for perturbed instances of shape (num_samples, n_classes)
distances : ndarray
Cosine distances from original instance of shape (num_samples,)
Notes
-----
The first sample (index 0) is always the original unperturbed instance.
Feature ordering: [audio_components, lyrics_lines] for 'both' modality.
"""
n_audio = audio_fact.get_number_components()
n_text = text_fact.num_words()
# Set total features based on modality
if modality == "both":
total_features = n_audio + n_text
elif modality == "audio":
total_features = n_audio
elif modality == "lyrical":
total_features = n_text
print(
f"[MusicLIME] Total features: {total_features} ({n_audio} audio + {n_text} text)"
)
# Generate binary masks
start_time = time.time()
print("[MusicLIME] Generating perturbation masks...")
data = self.random_state.randint(0, 2, num_samples * total_features).reshape(
(num_samples, total_features)
)
data[0, :] = 1 # Original instance
mask_time = time.time() - start_time
print(green_bold(f"[MusicLIME] Mask generation completed in {mask_time:.2f}s"))
# Generate perturbed instances
start_time = time.time()
texts = []
audios = []
for _, row in enumerate(data):
if modality == "both":
# Audio perturbation & reconstruction
audio_mask = row[:n_audio]
active_audio_components = np.where(audio_mask != 0)[0]
perturbed_audio = audio_fact.compose_model_input(
active_audio_components
)
audios.append(perturbed_audio)
# Text perturbation & reconstruction
text_mask = row[n_audio:]
inactive_lines = np.where(text_mask == 0)[0]
perturbed_text = text_fact.inverse_removing(inactive_lines)
texts.append(perturbed_text)
elif modality == "audio":
# Audio perturbation, original lyrics
active_audio_components = np.where(row != 0)[0]
perturbed_audio = audio_fact.compose_model_input(
active_audio_components
)
audios.append(perturbed_audio)
# Use original lyrics (no perturbation)
perturbed_text = text_fact.inverse_removing(
[]
) # Empty array = no removal
texts.append(perturbed_text)
elif modality == "lyrical":
# Original audio, lyrics perturbation
all_audio_components = np.arange(n_audio) # Use all audio components
perturbed_audio = audio_fact.compose_model_input(all_audio_components)
audios.append(perturbed_audio)
# Perturb lyrics
inactive_lines = np.where(row == 0)[0]
perturbed_text = text_fact.inverse_removing(inactive_lines)
texts.append(perturbed_text)
perturbation_time = time.time() - start_time
print(
green_bold(
f"[MusicLIME] Perturbation creation completed in {perturbation_time:.2f}s"
)
)
# Get predictions
print(f"[MusicLIME] Getting predictions for {len(texts)} samples...")
predictions = predict_fn(texts, audios)
# Show the original prediction (first row is always the unperturbed original)
original_prediction = predictions[0]
predicted_class = np.argmax(original_prediction) # 0 = AI, 1 = Human
confidence = original_prediction[predicted_class]
# Print original prediction
print("[MusicLIME] Original Prediction:")
print(
f" Raw probabilities: [AI: {original_prediction[0]:.3f}, Human: {original_prediction[1]:.3f}]"
)
print(
f" Predicted class: {'AI-Generated' if predicted_class == 0 else 'Human-Composed'}"
)
print(f" Confidence: {confidence:.3f}")
# Debug prints
print(f"[MusicLIME] Predictions shape: {predictions.shape}")
print(f"[MusicLIME] Predictions:\n{predictions}")
print(f"[MusicLIME] Prediction variance: {np.var(predictions, axis=0)}")
print(
f"[MusicLIME] Prediction range: min={np.min(predictions, axis=0)}, max={np.max(predictions, axis=0)}"
)
# Check if all predictions are identical
if np.allclose(predictions, predictions[0]):
print(
"[MusicLIME] WARNING: All predictions are identical! LIME cannot learn from this."
)
# Calculate distances
print("[MusicLIME] Calculating distances...")
distances = sklearn.metrics.pairwise_distances(
data, data[0].reshape(1, -1), metric="cosine"
).ravel()
# Prints for debugging
print(
f"[MusicLIME] Distance range: min={np.min(distances)}, max={np.max(distances)}"
)
print(
f"[MusicLIME] Data variance: {np.var(data, axis=0)[:10]}..."
) # First 10 features
return data, predictions, distances
class MusicLIMEExplanation:
"""
Container for MusicLIME explanation results and analysis methods.
Stores factorizations, perturbation data, and LIME-fitted explanations
for a single music instance. Provides methods to extract top features
and export results to structured formats.
Attributes
----------
audio_factorization : OpenUnmixFactorization
Audio source separation components
text_factorization : LineIndexedString
Lyrics line segmentation components
data : ndarray
Binary perturbation masks used for explanation
predictions : ndarray
Model predictions for all perturbations
intercept : dict
LIME model intercepts by label
local_exp : dict
Feature importance weights by label
score : dict
LIME model R² scores by label
local_pred : dict
Local model predictions by label
"""
def __init__(self, audio_factorization, text_factorization, data, predictions):
"""
Initialize explanation object with factorizations and prediction data.
Parameters
----------
audio_factorization : OpenUnmixFactorization
Audio source separation components
text_factorization : LineIndexedString
Text line segmentation components
data : ndarray
Binary perturbation masks used for explanation
predictions : ndarray
Model predictions for all perturbations
"""
self.audio_factorization = audio_factorization
self.text_factorization = text_factorization
self.data = data
self.predictions = predictions
self.intercept = {}
self.local_exp = {}
self.score = {}
self.local_pred = {}
def get_explanation(self, label, num_features=10):
"""
Extract top feature explanations for a specific label.
Parameters
----------
label : int
Target label to explain (0=AI-Generated, 1=Human-Composed)
num_features : int, default=10
Number of top features to return
Returns
-------
list of dict
Feature explanations with type, feature description, and weight
"""
if label not in self.local_exp:
return []
exp = self.local_exp[label][:num_features]
n_audio = self.audio_factorization.get_number_components()
explanations = []
for feature_idx, weight in exp:
if feature_idx < n_audio:
# Audio component
component_name = self.audio_factorization.get_ordered_component_names()[
feature_idx
]
explanations.append(
{"type": "audio", "feature": component_name, "weight": weight}
)
else:
# Text line
line_idx = feature_idx - n_audio
line_text = self.text_factorization.word(line_idx)
explanations.append(
{"type": "lyrics", "feature": line_text, "weight": weight}
)
return explanations
def save_to_json(self, filepath, song_info=None, num_features=10):
"""
Save explanation results to structured JSON file.
Parameters
----------
filepath : str
Output filename for JSON results
song_info : dict, optional
Additional metadata about the song
num_features : int, default=10
Number of top features to include in output
Returns
-------
Path
Path to the saved JSON file
"""
results_dir = Path("results")
results_dir.mkdir(exist_ok=True)
# Get explanation data
explanation_data = {}
for label in self.local_exp.keys():
features = self.get_explanation(label, num_features)
explanation_data[f"label_{label}"] = {
"prediction_label": "Human-Composed" if label == 1 else "AI-Generated",
"intercept": float(self.intercept.get(label, 0)),
"score": float(self.score.get(label, 0)),
"local_prediction": (
float(self.local_pred.get(label, [0])[0])
if self.local_pred.get(label)
else 0
),
"top_features": [
{
"rank": i + 1,
"type": item["type"],
"feature": item["feature"],
"weight": float(item["weight"]),
}
for i, item in enumerate(features)
],
}
# Create complete JSON structure
json_output = {
"metadata": {
"timestamp": datetime.now().isoformat(),
"song_info": song_info or {},
"model_info": {
"total_audio_components": self.audio_factorization.get_number_components(),
"total_text_lines": self.text_factorization.num_words(),
"total_features": self.audio_factorization.get_number_components()
+ self.text_factorization.num_words(),
},
"explanation_params": {
"num_samples": len(self.data),
"num_features_shown": num_features,
},
},
"explanations": explanation_data,
}
# Save to results folder
output_path = results_dir / filepath
with open(output_path, "w") as f:
json.dump(json_output, f, indent=2)
print(f"[MusicLIME] Explanation saved to: {output_path}")
return output_path