Spaces:
Running
Running
Auto-deploy from GitHub: cb4a769f21149a39309d7602af027f4cc33f773b
Browse files- app/server.py +2 -2
- scripts/predict.py +55 -5
- scripts/predict_runner.py +35 -13
- src/preprocessing/preprocessor.py +24 -0
- src/utils/dataset.py +23 -0
app/server.py
CHANGED
|
@@ -14,7 +14,7 @@ from app.utils import load_server_config, load_model_config, download_youtube_au
|
|
| 14 |
|
| 15 |
# Model/XAI-related imports
|
| 16 |
from scripts.explain import musiclime
|
| 17 |
-
from scripts.predict import
|
| 18 |
|
| 19 |
# Other imports
|
| 20 |
import io
|
|
@@ -148,7 +148,7 @@ async def predict_music(
|
|
| 148 |
raise HTTPException(status_code=400, detail=f"Invalid audio file: {str(e)}")
|
| 149 |
|
| 150 |
# Call MLP predict runner script
|
| 151 |
-
results =
|
| 152 |
|
| 153 |
return PredictionResponse(
|
| 154 |
status="success",
|
|
|
|
| 14 |
|
| 15 |
# Model/XAI-related imports
|
| 16 |
from scripts.explain import musiclime
|
| 17 |
+
from scripts.predict import predict_multimodal
|
| 18 |
|
| 19 |
# Other imports
|
| 20 |
import io
|
|
|
|
| 148 |
raise HTTPException(status_code=400, detail=f"Invalid audio file: {str(e)}")
|
| 149 |
|
| 150 |
# Call MLP predict runner script
|
| 151 |
+
results = predict_multimodal(audio_data, lyrics)
|
| 152 |
|
| 153 |
return PredictionResponse(
|
| 154 |
status="success",
|
scripts/predict.py
CHANGED
|
@@ -1,16 +1,15 @@
|
|
| 1 |
-
from src.preprocessing.preprocessor import single_preprocessing
|
| 2 |
from src.spectttra.spectttra_trainer import spectttra_predict
|
| 3 |
from src.llm2vectrain.model import load_llm2vec_model
|
| 4 |
from src.llm2vectrain.llm2vec_trainer import l2vec_single_train, load_pca_model
|
| 5 |
from src.models.mlp import build_mlp, load_config
|
| 6 |
-
from src.utils.dataset import instance_scaler
|
| 7 |
|
| 8 |
-
import joblib
|
| 9 |
import numpy as np
|
| 10 |
import pandas as pd
|
| 11 |
|
| 12 |
|
| 13 |
-
def
|
| 14 |
"""
|
| 15 |
Predict script which includes preprocessing, feature extraction, and
|
| 16 |
training the MLP model for a single data sample.
|
|
@@ -73,6 +72,57 @@ def predict_pipeline(audio_file, lyrics):
|
|
| 73 |
}
|
| 74 |
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
if __name__ == "__main__":
|
| 77 |
# Example usage (replace with real inputs, place song inside data/raw.)
|
| 78 |
data = pd.read_csv("data/raw/predict_data_final.csv")
|
|
@@ -80,7 +130,7 @@ if __name__ == "__main__":
|
|
| 80 |
result = []
|
| 81 |
label = []
|
| 82 |
for row in data.itertuples():
|
| 83 |
-
prediction =
|
| 84 |
result.append(
|
| 85 |
{
|
| 86 |
"song": row.song,
|
|
|
|
| 1 |
+
from src.preprocessing.preprocessor import single_preprocessing, single_audio_preprocessing
|
| 2 |
from src.spectttra.spectttra_trainer import spectttra_predict
|
| 3 |
from src.llm2vectrain.model import load_llm2vec_model
|
| 4 |
from src.llm2vectrain.llm2vec_trainer import l2vec_single_train, load_pca_model
|
| 5 |
from src.models.mlp import build_mlp, load_config
|
| 6 |
+
from src.utils.dataset import instance_scaler, audio_instance_scaler
|
| 7 |
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
import pandas as pd
|
| 10 |
|
| 11 |
|
| 12 |
+
def predict_multimodal(audio_file, lyrics):
|
| 13 |
"""
|
| 14 |
Predict script which includes preprocessing, feature extraction, and
|
| 15 |
training the MLP model for a single data sample.
|
|
|
|
| 72 |
}
|
| 73 |
|
| 74 |
|
| 75 |
+
def predict_unimodal(audio_file):
|
| 76 |
+
"""
|
| 77 |
+
Predict script of AUDIO only which includes preprocessing, feature extraction, and
|
| 78 |
+
training the MLP model for a single data sample.
|
| 79 |
+
|
| 80 |
+
Parameters
|
| 81 |
+
----------
|
| 82 |
+
audio : audio_object
|
| 83 |
+
Audio object file
|
| 84 |
+
|
| 85 |
+
Returns
|
| 86 |
+
-------
|
| 87 |
+
prediction : str
|
| 88 |
+
A string result of the prediction
|
| 89 |
+
|
| 90 |
+
label : int
|
| 91 |
+
A numerical representation of the prediction
|
| 92 |
+
"""
|
| 93 |
+
|
| 94 |
+
# 1.) Preprocess the audio
|
| 95 |
+
audio = single_audio_preprocessing(audio_file)
|
| 96 |
+
|
| 97 |
+
# 2.) Call the inference method from SpecTTTra
|
| 98 |
+
audio_features = spectttra_predict(audio)
|
| 99 |
+
audio_features = audio_features.reshape(1, -1)
|
| 100 |
+
|
| 101 |
+
# 4.) Scale the vector using Z-Score
|
| 102 |
+
audio_features = audio_instance_scaler(audio_features)
|
| 103 |
+
|
| 104 |
+
# 5.) Load MLP Classifier
|
| 105 |
+
config = load_config("config/model_config.yml")
|
| 106 |
+
classifier = build_mlp(input_dim=audio_features.shape[1], config=config)
|
| 107 |
+
|
| 108 |
+
# 6.) Load trained weights
|
| 109 |
+
model_path = "models/spectttra/mlp_best.pth"
|
| 110 |
+
classifier.load_model(model_path)
|
| 111 |
+
classifier.model.eval()
|
| 112 |
+
|
| 113 |
+
# 8.) Run prediction
|
| 114 |
+
confidence, prediction, label, probability = classifier.predict_single(
|
| 115 |
+
audio_features.flatten()
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
return {
|
| 119 |
+
"confidence": confidence,
|
| 120 |
+
"prediction": prediction,
|
| 121 |
+
"label": label,
|
| 122 |
+
"probability": probability,
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
|
| 126 |
if __name__ == "__main__":
|
| 127 |
# Example usage (replace with real inputs, place song inside data/raw.)
|
| 128 |
data = pd.read_csv("data/raw/predict_data_final.csv")
|
|
|
|
| 130 |
result = []
|
| 131 |
label = []
|
| 132 |
for row in data.itertuples():
|
| 133 |
+
prediction = predict_multimodal(row.song, row.lyrics)
|
| 134 |
result.append(
|
| 135 |
{
|
| 136 |
"song": row.song,
|
scripts/predict_runner.py
CHANGED
|
@@ -1,19 +1,41 @@
|
|
| 1 |
import librosa
|
| 2 |
-
from scripts.predict import
|
| 3 |
|
| 4 |
-
# Load test audio and lyrics
|
| 5 |
-
audio_path = "data/external/sample_1.mp3"
|
| 6 |
-
lyrics_path = "data/external/sample_1.txt"
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
# Load
|
| 12 |
-
|
| 13 |
-
lyrics_text = f.read()
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
|
|
|
| 17 |
|
| 18 |
-
print(
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import librosa
|
| 2 |
+
from scripts.predict import predict_multimodal, predict_unimodal
|
| 3 |
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
def predict_multimodal_runner(sample: str):
|
| 6 |
+
# Load test audio and lyrics
|
| 7 |
+
audio_path = f"data/external/{sample}.mp3"
|
| 8 |
+
lyrics_path = f"data/external/{sample}.txt"
|
| 9 |
|
| 10 |
+
# Load audio
|
| 11 |
+
audio_data, sr = librosa.load(audio_path)
|
|
|
|
| 12 |
|
| 13 |
+
# Load lyrics
|
| 14 |
+
with open(lyrics_path, "r", encoding="utf-8") as f:
|
| 15 |
+
lyrics_text = f.read()
|
| 16 |
|
| 17 |
+
print("Running prediction pipeline...")
|
| 18 |
+
prediction = predict_multimodal(audio_data, lyrics_text)
|
| 19 |
+
|
| 20 |
+
print(f"\n=== PREDICTION RESULT ===")
|
| 21 |
+
print(f"Prediction: {prediction}")
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def predict_unimodal_runner(sample: str):
|
| 25 |
+
# Load test audio and lyrics
|
| 26 |
+
audio_path = f"data/raw/{sample}.mp3"
|
| 27 |
+
|
| 28 |
+
# Load audio
|
| 29 |
+
audio_data, sr = librosa.load(audio_path)
|
| 30 |
+
|
| 31 |
+
print("Running prediction pipeline...")
|
| 32 |
+
prediction = predict_unimodal(audio_data)
|
| 33 |
+
|
| 34 |
+
print(f"\n=== PREDICTION RESULT ===")
|
| 35 |
+
print(f"Prediction: {prediction}")
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
if __name__ == "__main__":
|
| 39 |
+
sample = "fake_sunshine"
|
| 40 |
+
|
| 41 |
+
predict_unimodal_runner(sample)
|
src/preprocessing/preprocessor.py
CHANGED
|
@@ -120,6 +120,30 @@ def single_preprocessing(audio, lyric: str):
|
|
| 120 |
return processed_song, processed_lyric
|
| 121 |
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
def dataset_read(batch_size=20):
|
| 124 |
"""
|
| 125 |
Reads the main dataset, splits it into the train/test/valid split, and computes
|
|
|
|
| 120 |
return processed_song, processed_lyric
|
| 121 |
|
| 122 |
|
| 123 |
+
def single_audio_preprocessing(audio):
|
| 124 |
+
"""
|
| 125 |
+
Preprocesses a single record of audio
|
| 126 |
+
|
| 127 |
+
Parameters
|
| 128 |
+
----------
|
| 129 |
+
audio : audio_object
|
| 130 |
+
Audio object file
|
| 131 |
+
|
| 132 |
+
Returns
|
| 133 |
+
-------
|
| 134 |
+
processed_song : tensor
|
| 135 |
+
Tensor version of the audio
|
| 136 |
+
|
| 137 |
+
"""
|
| 138 |
+
# Instantiate preprocessor classes
|
| 139 |
+
audio_preprocessor = AudioPreprocessor(script="predict")
|
| 140 |
+
|
| 141 |
+
# Preprocess both song and lyrics
|
| 142 |
+
processed_song = audio_preprocessor(file=audio)
|
| 143 |
+
|
| 144 |
+
return processed_song
|
| 145 |
+
|
| 146 |
+
|
| 147 |
def dataset_read(batch_size=20):
|
| 148 |
"""
|
| 149 |
Reads the main dataset, splits it into the train/test/valid split, and computes
|
src/utils/dataset.py
CHANGED
|
@@ -288,3 +288,26 @@ def instance_scaler(audio: np.ndarray, lyrics: np.ndarray):
|
|
| 288 |
scaled_lyric = lyric_scaler.transform(lyrics)
|
| 289 |
|
| 290 |
return scaled_audio, scaled_lyric
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
scaled_lyric = lyric_scaler.transform(lyrics)
|
| 289 |
|
| 290 |
return scaled_audio, scaled_lyric
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
def audio_instance_scaler(audio: np.ndarray):
|
| 294 |
+
"""
|
| 295 |
+
Method to scale the single input audio
|
| 296 |
+
|
| 297 |
+
Parameters
|
| 298 |
+
----------
|
| 299 |
+
audio : np.array
|
| 300 |
+
Instance of an audio feature
|
| 301 |
+
|
| 302 |
+
Returns
|
| 303 |
+
-------
|
| 304 |
+
scaled_audio : np.array
|
| 305 |
+
Array of scaled audio feature
|
| 306 |
+
"""
|
| 307 |
+
|
| 308 |
+
# Apply scaler to the single inputs
|
| 309 |
+
audio_scaler = joblib.load(AUDIO_SCALER)
|
| 310 |
+
|
| 311 |
+
scaled_audio = audio_scaler.transform(audio)
|
| 312 |
+
|
| 313 |
+
return scaled_audio
|