Spaces:
Running
Running
File size: 18,689 Bytes
862006f 06b948a 862006f 06b948a 862006f 82948a8 862006f bee993e 82948a8 06b948a bee993e e6888d8 bee993e e6888d8 bee993e e6888d8 862006f bee993e 862006f e6888d8 862006f e6888d8 862006f e6888d8 862006f e6888d8 06b948a 618bdc8 862006f 4fa03c1 618bdc8 4fa03c1 e6888d8 4fa03c1 618bdc8 862006f 618bdc8 862006f e108969 862006f e108969 862006f e108969 862006f fd5b2c0 862006f 1430048 862006f 1430048 862006f 1430048 862006f 1430048 862006f 1430048 862006f 0e008e1 862006f e6888d8 862006f e108969 862006f 33d19f4 e34297f e6888d8 e108969 33d19f4 e34297f 33d19f4 e34297f 33d19f4 862006f e34297f e108969 e34297f e108969 870ed73 33d19f4 870ed73 33d19f4 870ed73 33d19f4 862006f e34297f 862006f e108969 e34297f e108969 33d19f4 e108969 33d19f4 e108969 862006f e108969 862006f e108969 862006f 33d19f4 862006f 33d19f4 862006f 33d19f4 862006f 33d19f4 862006f e34297f 862006f e34297f 862006f e34297f 862006f 870ed73 862006f 870ed73 862006f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
"""
Cantonese TTS Demo - Powered by GPT-SoVITS
Final Version: All models downloaded from HuggingFace
"""
import os
import sys
import torch
import numpy as np
import gradio as gr
import soundfile as sf
from pathlib import Path
from huggingface_hub import hf_hub_download, snapshot_download
import zipfile
import shutil
# Add this for Zero GPU spaces
import spaces
# Set up paths
ROOT_DIR = Path(__file__).parent
sys.path.append(str(ROOT_DIR))
# Configure environment
os.environ["version"] = "v2ProPlus"
os.environ["is_half"] = "True"
os.environ["is_share"] = "False"
# Model repositories
YOUR_MODEL_REPO = "laubonghaudoi/zoengjyutgaai_tts" # Your fine-tuned models
PRETRAINED_REPO = "XXXXRT/GPT-SoVITS-Pretrained" # Official pretrained models
# Global variables
tts_instance = None
models_ready = False
def download_and_extract_pretrained():
"""Download and extract pretrained models from HuggingFace"""
pretrained_dir = ROOT_DIR / "GPT_SoVITS" / "pretrained_models"
pretrained_dir.mkdir(parents=True, exist_ok=True)
# Check if already downloaded
if (pretrained_dir / "chinese-hubert-base").exists() and \
(pretrained_dir / "chinese-roberta-wwm-ext-large").exists():
print("✓ Pretrained models already exist")
return True
try:
print("📥 Downloading pretrained models from HuggingFace...")
# Download the pretrained models zip
zip_path = hf_hub_download(
repo_id=PRETRAINED_REPO,
filename="pretrained_models.zip",
cache_dir="./cache",
resume_download=True
)
print("📦 Extracting pretrained models...")
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
# Extract to GPT_SoVITS directory
zip_ref.extractall(ROOT_DIR / "GPT_SoVITS")
print("✓ Pretrained models ready")
return True
except Exception as e:
print(f"❌ Error downloading pretrained models: {e}")
return False
def download_g2pw_model():
"""Download G2PW model for Chinese text processing"""
g2pw_dir = ROOT_DIR / "GPT_SoVITS" / "text" / "G2PWModel"
if g2pw_dir.exists():
print("✓ G2PW model already exists")
return True
try:
print("📥 Downloading G2PW model...")
# Download G2PW model zip
zip_path = hf_hub_download(
repo_id=PRETRAINED_REPO,
filename="G2PWModel.zip",
cache_dir="./cache",
resume_download=True
)
print("📦 Extracting G2PW model...")
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(ROOT_DIR / "GPT_SoVITS" / "text")
print("✓ G2PW model ready")
return True
except Exception as e:
print(f"❌ Error downloading G2PW model: {e}")
return False
def download_finetuned_models():
"""Download your fine-tuned models"""
try:
print(f"📥 Downloading fine-tuned models from {YOUR_MODEL_REPO}...")
# Create directories for the models
gpt_dir = ROOT_DIR / "GPT_SoVITS" / "pretrained_models" / "fine_tuned"
gpt_dir.mkdir(parents=True, exist_ok=True)
# Download GPT model
gpt_cache_path = hf_hub_download(
repo_id=YOUR_MODEL_REPO,
filename="gpt/dpo1-e1000.ckpt",
cache_dir="./models",
resume_download=True
)
# Copy GPT model to expected location
gpt_path = gpt_dir / "dpo1-e1000.ckpt"
if not gpt_path.exists():
shutil.copy2(gpt_cache_path, gpt_path)
print(f"✓ GPT model downloaded: {gpt_path}")
# Download the known working SoVITS model
sovits_file = "sovits/188hr_e50_s5950.pth"
model_name = Path(sovits_file).name
print(f"📥 Downloading SoVITS model {model_name}...")
sovits_cache_path = hf_hub_download(
repo_id=YOUR_MODEL_REPO,
filename=sovits_file,
cache_dir="./models",
resume_download=True
)
# Copy to expected location
sovits_path = gpt_dir / model_name
if not sovits_path.exists():
shutil.copy2(sovits_cache_path, sovits_path)
file_size = sovits_path.stat().st_size / (1024 * 1024)
print(f"✓ SoVITS model downloaded: {model_name} ({file_size:.1f}MB)")
return str(gpt_path), str(sovits_path)
except Exception as e:
print(f"❌ Error downloading fine-tuned models: {e}")
raise
def ensure_all_models():
"""Ensure all required models are downloaded"""
global models_ready
if models_ready:
return True
print("🔄 Checking and downloading required models...")
# Download pretrained models
if not download_and_extract_pretrained():
return False
# Download G2PW model
if not download_g2pw_model():
return False
# Download nltk data if needed (for text processing)
try:
import nltk
nltk.download('averaged_perceptron_tagger', quiet=True)
nltk.download('cmudict', quiet=True)
except:
pass
models_ready = True
print("✅ All models ready!")
return True
@spaces.GPU(duration=60)
def generate_tts(
text,
ref_audio,
ref_text,
top_k=15,
top_p=1.0,
temperature=1.0,
speed=1.0
):
"""Generate TTS with GPU acceleration"""
global tts_instance
try:
# Ensure models are downloaded
if not ensure_all_models():
return None, "❌ 模型下载失败 | Model download failed"
# Initialize TTS instance if needed
if tts_instance is None:
# Import here after models are downloaded
sys.path.append(str(ROOT_DIR / "GPT_SoVITS"))
from TTS_infer_pack.TTS import TTS, TTS_Config
# Get model paths
gpt_path, sovits_path = download_finetuned_models()
print(f"Using fine-tuned models:")
print(f" GPT model: {gpt_path}")
print(f" SoVITS model: {sovits_path}")
device = "cuda" if torch.cuda.is_available() else "cpu"
# The TTS_Config looks for a "custom" key in the config dict
# If not found, it falls back to version defaults
# So we need to wrap our config in a "custom" key
config_dict = {
"custom": {
"device": device,
"is_half": torch.cuda.is_available(),
"bert_base_path": str(ROOT_DIR / "GPT_SoVITS" / "pretrained_models" / "chinese-roberta-wwm-ext-large"),
"cnhuhbert_base_path": str(ROOT_DIR / "GPT_SoVITS" / "pretrained_models" / "chinese-hubert-base"),
"t2s_weights_path": gpt_path, # Your fine-tuned GPT model
"vits_weights_path": sovits_path, # Your fine-tuned SoVITS model
"version": "v2ProPlus" # Match the environment variable
}
}
# Initialize TTS with config dictionary
tts_instance = TTS(config_dict)
print("✓ TTS instance initialized")
# Validate inputs
text = text.strip()
if not text:
return None, "輸入要合成嘅文本"
if ref_audio is None:
return None, "請上傳參考音頻"
if not ref_text or ref_text.strip() == "":
return None, "請輸入參考音頻文本"
# Generate audio
print(f"🎙️ Generating speech for: {text[:50]}...")
params = {
"text": text,
"text_lang": "yue",
"ref_audio_path": ref_audio, # ref_audio is already a string path
"prompt_text": ref_text.strip(),
"prompt_lang": "yue",
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"speed_factor": speed # Note: parameter name might be speed_factor
}
# Call TTS (run method returns a generator)
with torch.no_grad():
generator = tts_instance.run(params)
# The generator yields (sample_rate, audio_data) tuples
# We need to iterate through it to get the audio
sr = None
audio_data = None
for chunk_sr, chunk_audio in generator:
sr = chunk_sr
audio_data = chunk_audio
# Usually there's only one chunk for non-streaming mode
break
# Handle empty result
if audio_data is None or sr is None:
return None, "❌ 生成失败:返回空结果 | Generation failed: empty result"
# audio_data should already be a numpy array from the generator
# Ensure it's float32 for soundfile
if audio_data.dtype != np.float32:
audio_data = audio_data.astype(np.float32)
# Normalize to [-1, 1] range if needed
audio_max = np.abs(audio_data).max()
if audio_max > 1.0:
audio_data = audio_data / audio_max
# Save output
output_path = "output.wav"
sf.write(output_path, audio_data, sr)
return output_path, "✅ 合成成功!| Synthesis successful!"
except Exception as e:
import traceback
error_details = traceback.format_exc()
print(f"Error details:\n{error_details}")
return None, f"❌ 生成失败 | Generation failed: {str(e)}"
# Gradio interface
def create_interface():
with gr.Blocks(
title="粤语 TTS 演示 | Cantonese TTS Demo",
theme=gr.themes.Soft(),
css="""
.gradio-container {
font-family: 'Microsoft YaHei', 'PingFang SC', -apple-system, BlinkMacSystemFont, sans-serif;
}
#ref_audio {
min-height: 100px;
}
"""
) as demo:
gr.Markdown("""
# 張悦楷講古語音合成器 Zoeng Jyut Gaai TTS
模型信息見 [laubonghaudoi/zoengjyutgaai_tts](https://huggingface.co/laubonghaudoi/zoengjyutgaai_tts)
數據採用張悦楷講古語音數據集 [CanCLID/zoengjyutgaai](https://huggingface.co/datasets/CanCLID/zoengjyutgaai)
---
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("""
## 使用步驟
1. 上傳一段 3 - 10 秒嘅粵語音頻作為參考音頻,然後輸入埋佢嘅對應文本。
2. 輸入音頻對應嘅粵語文本,可以揀下面示例文本其中一句嚟試下效果
3. (可選)喺高級設定度揀語速、Top K、Top P、溫度
4. 撳生成掣
### 參考音頻係咩?
上傳嘅參考音頻主要用嚟控制生成音頻嘅語氣同情感。例如參考音頻係朗讀詩詞,噉生成嘅音頻就會好似朗讀詩詞噉講嘢;如果參考音頻係疑問,噉生成嘅音頻都會有疑問語氣。
如果你冇參考音頻或者懶得揾,都可以直接撳「使用預設參考音頻」入面嘅選項。
## 已知問題
1. 模型有時會有幻覺,生成啲同文本完全無關嘅亂噏。呢個一般係參考音頻嘅問題,換一條參考音頻同文本重試就得。
1. 因為個基礎模型係用簡體字訓練嘅,所以可能會出現「只隻」不分、「松鬆」不分嘅問題,例如「一隻狗」會讀成「一 zi2 狗」。要解決只能用同音字代替,例如寫成「一脊狗」。
1. 輸入文本唔可以太長,否則後面嗰啲會自動切晒。
""")
with gr.Column(scale=2):
# Reference audio section
with gr.Group():
gr.Markdown("### 参考音频")
with gr.Row():
with gr.Column():
ref_audio_input = gr.Audio(
label="上傳參考音頻 (3 - 10秒)",
type="filepath",
elem_id="ref_audio"
)
with gr.Column():
ref_text_input = gr.Textbox(
label="參考音頻文本",
placeholder="參考音頻對應嘅粵文轉寫",
lines=3
)
# Default reference section
with gr.Accordion("用預設參考音頻", open=True):
with gr.Row():
default_ref_btn = gr.Button(
"張悦楷《三國演義》開場白",
variant="secondary",
size="sm"
)
gr.Markdown("*各位朋友,喺講《三國演義》之前啊,我唸一首詞畀大家聽下吓。*", elem_id="ref_desc")
# Text to synthesize
text_input = gr.Textbox(
label="輸入文本",
placeholder="例:從前有個住喺海邊嘅阿婆",
lines=5
)
# Examples section moved here
gr.Markdown("### 示例文本")
gr.Examples(
examples=[
["廣州商團事變,廣東革命政府叫廣州商團叛亂。廣州商團叫廣州屠城事件、西關屠城血案或者西關慘案,係一九二四年十月十號喺廣州爆發嘅一場武裝衝突。"],
["紅線女,原名鄺健廉,粵劇表演藝術家、粵劇紅派表演藝術創始人。她曾被周恩來譽為「南國紅豆」。"],
["二十日,葉舉又與粵軍諸將致電孫文,要求恢復陳炯明廣東省長、粵軍總司令之職,遭孫文拒絕。"],
["但係呢,三個月之後,上海失咗,南京失咗。共產黨喺武漢呢,即刻變咗口嘞,話,凡親有主張話蘇聯參戰嘅呢,嗰個就係國賊漢奸噉。"],
],
inputs=text_input,
label="揀一個嚟生成試下效果"
)
# Advanced settings
with gr.Accordion("⚙️ 高级設定", open=False):
with gr.Row():
top_k_slider = gr.Slider(
minimum=1, maximum=50, value=15, step=1,
label="Top K",
info="控制採樣,越高隨機性越大,太低可能會變成亂噏"
)
top_p_slider = gr.Slider(
minimum=0.0, maximum=1.0, value=1.0, step=0.1,
label="Top P",
info="核采样"
)
with gr.Row():
temperature_slider = gr.Slider(
minimum=0.1, maximum=2.0, value=1.0, step=0.1,
label="Temperature",
info="温度,越高越有創造力但不可預測"
)
speed_slider = gr.Slider(
minimum=0.5, maximum=2.0, value=1.0, step=0.1,
label="语速",
info="1.0 = 正常"
)
# Generate button
generate_btn = gr.Button(
"生成",
variant="primary",
size="lg"
)
# Output
with gr.Group():
audio_output = gr.Audio(
label="成果",
type="filepath"
)
status_output = gr.Textbox(
label="状态",
interactive=False,
max_lines=3
)
# Event handlers
# Default reference audio button
def use_default_reference():
ref_audio_path = ROOT_DIR / "ref" / "001_001.opus"
# Check if file exists
if ref_audio_path.exists():
ref_text = "各位朋友,喺講《三國演義》之前啊,我唸一首詞畀大家聽下吓。"
return str(ref_audio_path), ref_text
else:
print(f"Warning: Default reference audio not found at {ref_audio_path}")
return None, ""
default_ref_btn.click(
fn=use_default_reference,
outputs=[ref_audio_input, ref_text_input]
)
# Generate button
generate_btn.click(
fn=generate_tts,
inputs=[
text_input,
ref_audio_input,
ref_text_input,
top_k_slider,
top_p_slider,
temperature_slider,
speed_slider
],
outputs=[audio_output, status_output]
)
return demo
# Launch the app
if __name__ == "__main__":
print("🎤 Initializing Cantonese TTS Demo...")
print("=" * 50)
print("This Space downloads all models from HuggingFace Hub:")
print(f"- Your models: {YOUR_MODEL_REPO}")
print(f"- Pretrained models: {PRETRAINED_REPO}")
print("=" * 50)
# Create necessary directories
(ROOT_DIR / "GPT_SoVITS").mkdir(exist_ok=True)
(ROOT_DIR / "models").mkdir(exist_ok=True)
(ROOT_DIR / "cache").mkdir(exist_ok=True)
(ROOT_DIR / "ref").mkdir(exist_ok=True) # For reference audio files
# Create and launch interface
demo = create_interface()
demo.queue(max_size=10)
demo.launch(
share=False,
show_error=True,
server_name="0.0.0.0",
server_port=7860
)
|