Spaces:
Running
Running
lucabadiali
commited on
Commit
·
52bb109
1
Parent(s):
d2882c3
Added local vs HF mode
Browse files- .gitignore +3 -3
- src/app/app.py +3 -7
- src/app/config.py +24 -0
- src/train_model.py +241 -0
.gitignore
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
ProjectEnv
|
| 2 |
-
|
| 3 |
.pytest_cache
|
| 4 |
-
artifacts
|
| 5 |
data/__pycache__
|
| 6 |
-
data/dataset
|
|
|
|
|
|
| 1 |
ProjectEnv
|
| 2 |
+
models
|
| 3 |
.pytest_cache
|
|
|
|
| 4 |
data/__pycache__
|
| 5 |
+
data/dataset
|
| 6 |
+
app/__pycache__
|
src/app/app.py
CHANGED
|
@@ -9,7 +9,7 @@ import csv
|
|
| 9 |
import requests
|
| 10 |
from typing import Union, List
|
| 11 |
import torch
|
| 12 |
-
|
| 13 |
|
| 14 |
|
| 15 |
app = FastAPI()
|
|
@@ -18,17 +18,13 @@ app = FastAPI()
|
|
| 18 |
class SentimentQuery(BaseModel):
|
| 19 |
input_texts: Union[str, List[str]]
|
| 20 |
|
| 21 |
-
|
| 22 |
-
mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt"
|
| 23 |
with urllib.request.urlopen(mapping_link) as f:
|
| 24 |
html = f.read().decode('utf-8').split("\n")
|
| 25 |
csvreader = csv.reader(html, delimiter='\t')
|
| 26 |
labels = [row[1] for row in csvreader if len(row) > 1]
|
| 27 |
|
| 28 |
-
|
| 29 |
-
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
| 30 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
| 31 |
-
|
| 32 |
|
| 33 |
|
| 34 |
@app.post("/predict")
|
|
|
|
| 9 |
import requests
|
| 10 |
from typing import Union, List
|
| 11 |
import torch
|
| 12 |
+
from .config import MODEL_SOURCE, ModelSource, load_model_and_tokenizer
|
| 13 |
|
| 14 |
|
| 15 |
app = FastAPI()
|
|
|
|
| 18 |
class SentimentQuery(BaseModel):
|
| 19 |
input_texts: Union[str, List[str]]
|
| 20 |
|
| 21 |
+
mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/sentiment/mapping.txt"
|
|
|
|
| 22 |
with urllib.request.urlopen(mapping_link) as f:
|
| 23 |
html = f.read().decode('utf-8').split("\n")
|
| 24 |
csvreader = csv.reader(html, delimiter='\t')
|
| 25 |
labels = [row[1] for row in csvreader if len(row) > 1]
|
| 26 |
|
| 27 |
+
tokenizer, model = load_model_and_tokenizer(MODEL_SOURCE)
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
@app.post("/predict")
|
src/app/config.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from enum import Enum
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class ModelSource(str, Enum):
|
| 8 |
+
HF = "hf"
|
| 9 |
+
LOCAL = "local"
|
| 10 |
+
|
| 11 |
+
MODEL_SOURCE = ModelSource(os.getenv("MODEL_SOURCE", "hf"))
|
| 12 |
+
HF_MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest"
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def load_model_and_tokenizer(MODEL_SOURCE):
|
| 16 |
+
if MODEL_SOURCE == ModelSource.HF: # use the latest model available in the HF hub
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained(HF_MODEL)
|
| 18 |
+
model = AutoModelForSequenceClassification.from_pretrained(HF_MODEL)
|
| 19 |
+
else: # use a locally fine tuned model
|
| 20 |
+
local_model_path = Path("models/saved_model")
|
| 21 |
+
assert local_model_path.exists(), """No local model was found. Run 'python3 src/train_model.py'"""
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained("models/saved_tokenizer")
|
| 23 |
+
model = AutoModelForSequenceClassification.from_pretrained("models/saved_model")
|
| 24 |
+
return tokenizer, model
|
src/train_model.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from app.utils import preprocess
|
| 2 |
+
import urllib
|
| 3 |
+
import csv
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import (
|
| 7 |
+
AutoTokenizer, AutoModelForSequenceClassification,
|
| 8 |
+
TrainingArguments, Trainer, EarlyStoppingCallback,
|
| 9 |
+
DataCollatorWithPadding
|
| 10 |
+
)
|
| 11 |
+
from datasets import load_from_disk
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# --- Device detection ---
|
| 15 |
+
if torch.cuda.is_available():
|
| 16 |
+
device = "cuda"
|
| 17 |
+
use_bf16 = torch.cuda.is_bf16_supported()
|
| 18 |
+
use_fp16 = not use_bf16
|
| 19 |
+
elif torch.backends.mps.is_available():
|
| 20 |
+
device = "mps"
|
| 21 |
+
use_bf16 = False
|
| 22 |
+
use_fp16 = False
|
| 23 |
+
else:
|
| 24 |
+
device = "cpu"
|
| 25 |
+
use_bf16 = False
|
| 26 |
+
use_fp16 = False
|
| 27 |
+
|
| 28 |
+
if device == "cuda" and use_bf16:
|
| 29 |
+
load_dtype = torch.bfloat16
|
| 30 |
+
elif device == "cuda" and use_fp16:
|
| 31 |
+
load_dtype = torch.float16
|
| 32 |
+
else:
|
| 33 |
+
load_dtype = torch.float32 # MPS/CPU -> fp32
|
| 34 |
+
|
| 35 |
+
import evaluate
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment"
|
| 39 |
+
|
| 40 |
+
# download label mapping
|
| 41 |
+
mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/sentiment/mapping.txt"
|
| 42 |
+
with urllib.request.urlopen(mapping_link) as f:
|
| 43 |
+
html = f.read().decode('utf-8').split("\n")
|
| 44 |
+
csvreader = csv.reader(html, delimiter='\t')
|
| 45 |
+
labels = [row[1] for row in csvreader if len(row) > 1]
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# --- Tokenizer: keep short max_length to save memory ---
|
| 50 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL, use_fast=True, model_max_length=128)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def tokenize_function(batch):
|
| 54 |
+
return tokenizer(
|
| 55 |
+
batch["text"],
|
| 56 |
+
truncation=True,
|
| 57 |
+
max_length=128,
|
| 58 |
+
padding=False # we will pad per-batch via DataCollatorWithPadding
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
data_collator = DataCollatorWithPadding(
|
| 62 |
+
tokenizer=tokenizer,
|
| 63 |
+
pad_to_multiple_of=8 if (device == "cuda" and (use_bf16 or use_fp16)) else None
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 68 |
+
MODEL, num_labels=3, torch_dtype=load_dtype
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
model.gradient_checkpointing_enable()
|
| 72 |
+
model.config.use_cache = False
|
| 73 |
+
|
| 74 |
+
#### DATASET LOADING
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
dataset_path = "data/dataset" # same path you used before
|
| 78 |
+
dataset = load_from_disk(dataset_path)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
# ---- COPY-PASTE FROM HERE ----
|
| 82 |
+
import os
|
| 83 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 84 |
+
|
| 85 |
+
from datasets import DatasetDict
|
| 86 |
+
from transformers import AutoTokenizer, DataCollatorWithPadding
|
| 87 |
+
|
| 88 |
+
def make_trainer_ready(
|
| 89 |
+
raw_ds: DatasetDict,
|
| 90 |
+
model_name: str = "cardiffnlp/twitter-roberta-base-sep2022",
|
| 91 |
+
train_frac: float = 0.2,
|
| 92 |
+
val_frac: float = 0.2,
|
| 93 |
+
seed: int = 42,
|
| 94 |
+
label_col: str = "label",
|
| 95 |
+
text_col: str = "text",
|
| 96 |
+
max_length: int = 128,
|
| 97 |
+
pad_to_multiple_of_8_on_cuda: bool = True,
|
| 98 |
+
):
|
| 99 |
+
"""
|
| 100 |
+
Returns (train_ds, eval_ds, data_collator, tokenizer) ready for HF Trainer.
|
| 101 |
+
- Ensures there's a validation split (creates one from train if missing).
|
| 102 |
+
- Takes fractional subsets, stratified by label when possible.
|
| 103 |
+
- Tokenizes and keeps only the columns Trainer expects.
|
| 104 |
+
"""
|
| 105 |
+
assert 0 < train_frac <= 1.0, "train_frac must be in (0,1]."
|
| 106 |
+
assert 0 < val_frac <= 1.0, "val_frac must be in (0,1]."
|
| 107 |
+
assert text_col in raw_ds["train"].column_names, f"Missing text column: {text_col}"
|
| 108 |
+
assert label_col in raw_ds["train"].column_names, f"Missing label column: {label_col}"
|
| 109 |
+
|
| 110 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True, model_max_length=max_length)
|
| 111 |
+
|
| 112 |
+
# 1) Ensure we have a validation split
|
| 113 |
+
if "validation" not in raw_ds:
|
| 114 |
+
split = raw_ds["train"].train_test_split(
|
| 115 |
+
test_size=val_frac,
|
| 116 |
+
stratify_by_column=label_col if label_col in raw_ds["train"].column_names else None,
|
| 117 |
+
seed=seed,
|
| 118 |
+
)
|
| 119 |
+
raw_ds = DatasetDict(train=split["train"], validation=split["test"])
|
| 120 |
+
else:
|
| 121 |
+
raw_ds = DatasetDict(train=raw_ds["train"], validation=raw_ds["validation"])
|
| 122 |
+
|
| 123 |
+
# 2) Take fractions (stratified when possible)
|
| 124 |
+
def take_frac(ds, frac):
|
| 125 |
+
if frac >= 1.0: # keep full split
|
| 126 |
+
return ds
|
| 127 |
+
out = ds.train_test_split(
|
| 128 |
+
test_size=1 - frac,
|
| 129 |
+
stratify_by_column=label_col if label_col in ds.column_names else None,
|
| 130 |
+
seed=seed,
|
| 131 |
+
)
|
| 132 |
+
return out["train"] # the kept fraction
|
| 133 |
+
|
| 134 |
+
small_train = take_frac(raw_ds["train"], train_frac)
|
| 135 |
+
small_eval = take_frac(raw_ds["validation"], val_frac)
|
| 136 |
+
|
| 137 |
+
# 3) Tokenize (no padding here; we pad per-batch with the collator)
|
| 138 |
+
def tok(batch):
|
| 139 |
+
return tokenizer(batch[text_col], truncation=True, max_length=max_length, padding=False)
|
| 140 |
+
|
| 141 |
+
small_train_tok = small_train.map(tok, batched=True, remove_columns=[c for c in small_train.column_names if c not in (text_col, label_col)])
|
| 142 |
+
small_eval_tok = small_eval.map(tok, batched=True, remove_columns=[c for c in small_eval.column_names if c not in (text_col, label_col)])
|
| 143 |
+
|
| 144 |
+
# 4) Keep only the columns Trainer needs
|
| 145 |
+
keep_cols = ["input_ids", "attention_mask", label_col]
|
| 146 |
+
small_train_tok = small_train_tok.remove_columns([c for c in small_train_tok.column_names if c not in keep_cols])
|
| 147 |
+
small_eval_tok = small_eval_tok.remove_columns([c for c in small_eval_tok.column_names if c not in keep_cols])
|
| 148 |
+
|
| 149 |
+
# 5) Data collator with dynamic padding (CUDA gets pad_to_multiple_of=8)
|
| 150 |
+
import torch
|
| 151 |
+
pad_to_mult = 8 if (pad_to_multiple_of_8_on_cuda and torch.cuda.is_available()) else None
|
| 152 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer, pad_to_multiple_of=pad_to_mult)
|
| 153 |
+
|
| 154 |
+
return small_train_tok, small_eval_tok, data_collator, tokenizer
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
train_ds, eval_ds, data_collator, tokenizer = make_trainer_ready(
|
| 158 |
+
raw_ds=dataset,
|
| 159 |
+
model_name="cardiffnlp/twitter-roberta-base-sep2022",
|
| 160 |
+
train_frac=0.2, # take 20% of train
|
| 161 |
+
val_frac=0.5, # take 50% of validation
|
| 162 |
+
seed=42,
|
| 163 |
+
label_col="label",
|
| 164 |
+
text_col="text",
|
| 165 |
+
max_length=128,
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
# --- Training args: stop forking on macOS, fix pin_memory ---
|
| 169 |
+
trainer_fp16 = bool(device == "cuda" and use_fp16)
|
| 170 |
+
trainer_bf16 = bool(device == "cuda" and use_bf16)
|
| 171 |
+
|
| 172 |
+
training_args = TrainingArguments(
|
| 173 |
+
output_dir="models/artifacts",
|
| 174 |
+
learning_rate=1e-5,
|
| 175 |
+
per_device_train_batch_size=4,
|
| 176 |
+
per_device_eval_batch_size=8,
|
| 177 |
+
gradient_accumulation_steps=8,
|
| 178 |
+
num_train_epochs=3,
|
| 179 |
+
weight_decay=0.01,
|
| 180 |
+
warmup_ratio=0.1,
|
| 181 |
+
lr_scheduler_type="linear",
|
| 182 |
+
|
| 183 |
+
eval_strategy="steps",
|
| 184 |
+
logging_strategy="steps",
|
| 185 |
+
save_strategy="steps",
|
| 186 |
+
eval_steps=500,
|
| 187 |
+
logging_steps=100,
|
| 188 |
+
save_steps=500,
|
| 189 |
+
|
| 190 |
+
load_best_model_at_end=True,
|
| 191 |
+
metric_for_best_model="recall",
|
| 192 |
+
greater_is_better=True,
|
| 193 |
+
save_total_limit=2,
|
| 194 |
+
|
| 195 |
+
# Precision
|
| 196 |
+
fp16=trainer_fp16,
|
| 197 |
+
bf16=trainer_bf16,
|
| 198 |
+
|
| 199 |
+
# DataLoader knobs (avoid fork/tokenizers warning on macOS)
|
| 200 |
+
dataloader_num_workers=0, # <- key for macOS/MPS
|
| 201 |
+
dataloader_pin_memory=(device == "cuda"), # False on MPS/CPU, True on CUDA
|
| 202 |
+
group_by_length=True,
|
| 203 |
+
report_to="none",
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
# --- Metrics (macro recall, etc.) ---
|
| 207 |
+
recall_metric = evaluate.load("recall")
|
| 208 |
+
acc_metric = evaluate.load("accuracy")
|
| 209 |
+
f1_metric = evaluate.load("f1")
|
| 210 |
+
|
| 211 |
+
def compute_metrics(eval_pred):
|
| 212 |
+
logits, labels = eval_pred
|
| 213 |
+
preds = logits.argmax(axis=-1)
|
| 214 |
+
return {
|
| 215 |
+
"accuracy": acc_metric.compute(predictions=preds, references=labels)["accuracy"],
|
| 216 |
+
"f1_macro": f1_metric.compute(predictions=preds, references=labels, average="macro")["f1"],
|
| 217 |
+
"recall": recall_metric.compute(predictions=preds, references=labels, average="macro")["recall"],
|
| 218 |
+
}
|
| 219 |
+
|
| 220 |
+
callbacks = [EarlyStoppingCallback(early_stopping_patience=2)]
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
trainer = Trainer(
|
| 224 |
+
model=model,
|
| 225 |
+
args=training_args,
|
| 226 |
+
train_dataset= train_ds,
|
| 227 |
+
eval_dataset= eval_ds,
|
| 228 |
+
compute_metrics=compute_metrics,
|
| 229 |
+
data_collator=data_collator, # <- important
|
| 230 |
+
tokenizer=tokenizer,
|
| 231 |
+
callbacks=callbacks,
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
model.to(device)
|
| 235 |
+
trainer.train()
|
| 236 |
+
trainer.save_model("models/saved_model")
|
| 237 |
+
tokenizer.save_pretrained("models/saved_tokenizer")
|
| 238 |
+
try:
|
| 239 |
+
trainer.create_model_card()
|
| 240 |
+
except Exception:
|
| 241 |
+
pass
|