Spaces:
Running
Running
Update models/visualizer.py
Browse files- models/visualizer.py +22 -83
models/visualizer.py
CHANGED
|
@@ -42,93 +42,32 @@ class TrafficVisualizer:
|
|
| 42 |
return (len(text) * 10, 16) # Fallback básico
|
| 43 |
|
| 44 |
def draw_detections(self, frame, detections, metrics):
|
| 45 |
-
"""Versión optimizada y robusta para visualización"""
|
| 46 |
-
print(f"[VISUALIZER] Recibió {len(detections)} detecciones") # Debug
|
| 47 |
-
for i, det in enumerate(detections[:3]): # Mostrar las primeras 3
|
| 48 |
-
print(f" - Det {i}: {det.get('label')} @ {det.get('bbox')}")
|
| 49 |
-
|
| 50 |
try:
|
| 51 |
-
#
|
| 52 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 53 |
image = Image.fromarray(frame_rgb)
|
| 54 |
-
draw = ImageDraw.Draw(image, 'RGBA')
|
| 55 |
-
|
| 56 |
-
|
| 57 |
for det in detections:
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
color = self.color_map.get(class_name, self.color_map['default'])
|
| 77 |
-
|
| 78 |
-
# Dibujar bounding box
|
| 79 |
-
draw.rectangle([x1, y1, x2, y2], outline=color, width=3)
|
| 80 |
-
|
| 81 |
-
# Dibujar etiqueta con fondo
|
| 82 |
-
label = f"{class_name} {confidence:.2f}"
|
| 83 |
-
text_w, text_h = self._get_text_size(label)
|
| 84 |
-
|
| 85 |
-
# Fondo semi-transparente
|
| 86 |
-
draw.rectangle(
|
| 87 |
-
[x1, y1-text_h-4, x1+text_w+4, y1],
|
| 88 |
-
fill=(*color, self.font_bg_opacity)
|
| 89 |
-
)
|
| 90 |
-
|
| 91 |
-
# Texto
|
| 92 |
-
draw.text(
|
| 93 |
-
(x1+2, y1-text_h-2),
|
| 94 |
-
label,
|
| 95 |
-
fill=self.font_color,
|
| 96 |
-
font=self.font
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
-
except Exception as e:
|
| 100 |
-
print(f"[VISUALIZER WARNING] Error en detección: {str(e)}")
|
| 101 |
-
continue
|
| 102 |
-
|
| 103 |
-
# Dibujar métricas
|
| 104 |
-
metrics_text = [
|
| 105 |
-
f"Objetos: {metrics.get('total_objects', 0)}",
|
| 106 |
-
f"Caos: {metrics.get('chaos_score', 0.0):.2f}",
|
| 107 |
-
f"Densidad: {metrics.get('density_score', 0.0):.2f}"
|
| 108 |
-
]
|
| 109 |
-
|
| 110 |
-
y_offset = 10
|
| 111 |
-
for text in metrics_text:
|
| 112 |
-
text_w, text_h = self._get_text_size(text)
|
| 113 |
-
|
| 114 |
-
# Fondo negro semi-transparente
|
| 115 |
-
draw.rectangle(
|
| 116 |
-
[10, y_offset, 20+text_w, y_offset+text_h+10],
|
| 117 |
-
fill=(0, 0, 0, self.font_bg_opacity)
|
| 118 |
-
)
|
| 119 |
-
|
| 120 |
-
# Texto blanco
|
| 121 |
-
draw.text(
|
| 122 |
-
(15, y_offset+5),
|
| 123 |
-
text,
|
| 124 |
-
fill="white",
|
| 125 |
-
font=self.font
|
| 126 |
-
)
|
| 127 |
-
y_offset += text_h + 15
|
| 128 |
-
|
| 129 |
-
# Convertir de vuelta a OpenCV
|
| 130 |
-
return cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 131 |
-
|
| 132 |
except Exception as e:
|
| 133 |
print(f"[VISUALIZER ERROR] {str(e)}")
|
| 134 |
return frame
|
|
|
|
| 42 |
return (len(text) * 10, 16) # Fallback básico
|
| 43 |
|
| 44 |
def draw_detections(self, frame, detections, metrics):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
try:
|
| 46 |
+
# Convertir frame OpenCV (BGR) a PIL (RGB)
|
| 47 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 48 |
image = Image.fromarray(frame_rgb)
|
| 49 |
+
draw = ImageDraw.Draw(image, 'RGBA')
|
| 50 |
+
height, width = frame.shape[:2]
|
| 51 |
+
|
| 52 |
for det in detections:
|
| 53 |
+
# Escalar coordenadas normalizadas a absolutas
|
| 54 |
+
x1 = int(det['bbox'][0] * width)
|
| 55 |
+
y1 = int(det['bbox'][1] * height)
|
| 56 |
+
x2 = int(det['bbox'][2] * width)
|
| 57 |
+
y2 = int(det['bbox'][3] * height)
|
| 58 |
+
|
| 59 |
+
# Dibujar bounding box
|
| 60 |
+
color = self.color_map.get(det['label'].lower(), self.color_map['default'])
|
| 61 |
+
draw.rectangle([x1, y1, x2, y2], outline=color, width=3)
|
| 62 |
+
|
| 63 |
+
# Dibujar etiqueta
|
| 64 |
+
label = f"{det['label']} {det['confidence']:.2f}"
|
| 65 |
+
text_w, text_h = self._get_text_size(label)
|
| 66 |
+
draw.rectangle([x1, y1-text_h-4, x1+text_w+4, y1], fill=(*color, 128))
|
| 67 |
+
draw.text((x1+2, y1-text_h-2), label, fill="black", font=self.font)
|
| 68 |
+
|
| 69 |
+
return cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # Convertir a BGR para OpenCV
|
| 70 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
except Exception as e:
|
| 72 |
print(f"[VISUALIZER ERROR] {str(e)}")
|
| 73 |
return frame
|