Video_Virality / files /pipeline /audio_analysis.py
github-actions[bot]
Automated UV deployment
ad2cb5b
import os
import json
import ffmpeg
import whisper
import subprocess
import base64
from pathlib import Path
from typing import Dict, List
import google.generativeai as genai
from config import make_path, GEMINI_API_KEY
from files.utils.logging import get_logger
class AudioAnalyzer:
def __init__(self, video_path: str, gemini_api_key: str = "", model_size: str = 'small'):
self.model_size = model_size
self.video_path = Path(video_path)
self.audio_path = make_path('interim/audio', video_path, 'audio', 'wav')
self.json_out = make_path('processed/audio-analysis', video_path, 'audio_analysis', 'json')
self.logger = get_logger('audio_analysis', f'{self.video_path.stem}_log.txt')
# ✅ Set Gemini key (explicit or from environment)
if gemini_api_key:
genai.configure(api_key=gemini_api_key)
else:
genai.configure(api_key=os.getenv("GEMINI_API_KEY", ""))
self.llm_model = genai.GenerativeModel('gemini-2.5-pro')
def _extract_audio(self) -> None:
self.audio_path.parent.mkdir(parents=True, exist_ok=True)
(
ffmpeg
.input(str(self.video_path))
.output(str(self.audio_path), ac=1, ar='16k', format='wav', loglevel='quiet')
.overwrite_output()
.run()
)
self.logger.info('Audio extracted to %s', self.audio_path)
def _transcribe(self) -> Dict:
model = whisper.load_model(self.model_size)
return model.transcribe(str(self.audio_path), fp16=False)
def _loudness_stats(self, audio_path: Path) -> Dict:
cmd = [
'ffmpeg', '-i', str(audio_path),
'-af', 'volumedetect',
'-f', 'null', 'NUL' if os.name == 'nt' else '/dev/null'
]
result = subprocess.run(cmd, capture_output=True, text=True)
mean = peak = None
for line in result.stderr.splitlines():
if 'mean_volume:' in line:
mean = float(line.split('mean_volume:')[1].split()[0])
if 'max_volume:' in line:
peak = float(line.split('max_volume:')[1].split()[0])
return {'loudness_mean': mean, 'loudness_peak': peak}
def _load_visual_context(self) -> Dict:
"""Load nearby frames and brightness values from extracted frame data."""
frame_json_path = make_path('processed/scene-detection', self.video_path, 'scene', 'json')
frames_dir = make_path('interim/frames', self.video_path, '', '')
if not frame_json_path.exists():
self.logger.warning("Frame metadata not found: %s", frame_json_path)
return {}
with open(frame_json_path, 'r', encoding='utf-8') as f:
scene_data = json.load(f)
if not scene_data.get('scenes'):
return {}
scene = scene_data['scenes'][0]
mid_time = (float(scene['start_time']) + float(scene['end_time'])) / 2
scene_idx = 0
def get_frame_path(tag):
return frames_dir / f"{self.video_path.stem}_scene_{scene_idx:02}{tag}.jpg"
def encode_image(p: Path) -> str:
if p.exists():
with open(p, 'rb') as f:
return base64.b64encode(f.read()).decode('utf-8')
return ""
return {
'mid_time': mid_time,
'frame': encode_image(get_frame_path('')),
'prev': encode_image(get_frame_path('_prev')),
'next': encode_image(get_frame_path('_next')),
'brightness': float(scene.get('brightness', -1.0))
}
def _gemini_audio_analysis(self, text: str, loudness: Dict, wps: float, visuals: Dict) -> Dict:
"""LLM-enhanced audio analysis using audio + first scene frames + metadata"""
prompt = f"""
You are an expert video analyst. Based on the transcript, loudness, speaking pace,
and the first scene's frames (prev, current, next), analyze the audio tone.
Answer in JSON only:
{{
"tone": "calm|excited|angry|funny|sad|neutral",
"emotion": "joy|sadness|anger|surprise|neutral|mixed",
"pace": "fast|medium|slow",
"delivery_score": 0-100,
"is_hooking_start": true|false,
"comment": "brief summary of audio performance",
"is_dark_artistic": true|false,
"brightness": 0-100
}}
Transcript: {text}
Loudness: {json.dumps(loudness)}
Words/sec: {wps}
Frame brightness: {visuals.get('brightness')}
"""
# ✅ Properly formatted parts for Gemini multimodal prompt
parts = [{"text": prompt}]
for tag in ['prev', 'frame', 'next']:
img_b64 = visuals.get(tag)
if img_b64:
parts.append({
"inline_data": {
"mime_type": "image/jpeg",
"data": base64.b64decode(img_b64),
}
})
try:
response = self.llm_model.generate_content(
contents=[{"role": "user", "parts": parts}],
generation_config={'temperature': 0.3}
)
text = getattr(response, 'text', '').strip()
cleaned = text.replace('```json', '').replace('```', '')
return json.loads(cleaned)
except Exception as e:
error_msg = str(e)
self.logger.error("LLM call failed: %s", e)
# Check if it's an API key error - if so, raise it to stop the pipeline
if any(keyword in error_msg.lower() for keyword in ["api_key", "invalid", "401", "403", "authentication", "unauthorized"]):
raise ValueError(f"Invalid Gemini API key: {error_msg}") from e
# For other errors, return defaults but log the issue
return {
"tone": "neutral",
"emotion": "neutral",
"pace": "medium",
"delivery_score": 50,
"is_hooking_start": False,
"comment": "LLM analysis failed, using defaults",
"is_dark_artistic": False,
"brightness": visuals.get("brightness", -1.0)
}
def analyze(self) -> Dict:
self._extract_audio()
whisper_res = self._transcribe()
full_text = whisper_res['text']
duration_s = whisper_res['segments'][-1]['end'] if whisper_res['segments'] else 0
wps = round(len(full_text.split()) / duration_s, 2) if duration_s else 0
loudness = self._loudness_stats(self.audio_path)
visual_context = self._load_visual_context()
gemini_analysis = self._gemini_audio_analysis(full_text, loudness, wps, visual_context)
result = {
'full_transcript': full_text,
'duration_seconds': duration_s,
'word_count': len(full_text.split()),
'words_per_second': wps,
**loudness,
**gemini_analysis
}
self.json_out.parent.mkdir(parents=True, exist_ok=True)
with open(self.json_out, 'w', encoding='utf-8') as f:
json.dump(result, f, indent=2)
self.logger.info('Audio + Visual LLM analysis saved to %s', self.json_out)
return result