File size: 8,132 Bytes
88ae5b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b1b105
 
88ae5b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
import cv2
import numpy as np
from ultralytics import YOLO
import tempfile
import os

# Initialize
model = YOLO("boxes.pt")
conf_threshold = 0.05

# ROI setup
pts_src = np.array([[0, 129], [1275, 303], [1274, 601], [3, 294]], dtype=np.float32)
width = int(np.linalg.norm(pts_src[0] - pts_src[1]))
height = int(np.linalg.norm(pts_src[0] - pts_src[3]))
M = cv2.getPerspectiveTransform(pts_src, np.array([[0, 0], [width, 0], [width, height], [0, height]], dtype=np.float32))
M_inv = cv2.getPerspectiveTransform(np.array([[0, 0], [width, 0], [width, height], [0, height]], dtype=np.float32), pts_src)

def draw_detection(frame, box, cls_id, conf, class_name, use_roi=False):
    """Draw single detection box and label"""
    x1, y1, x2, y2 = map(int, box[:4])
    color = (0, 255, 0) if class_name == "box" else (255, 255, 0)
    label = f"{class_name.upper()}: {conf:.2f}"
    (text_w, text_h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
    
    if use_roi:
        pts = np.array([[x1, y1], [x2, y1], [x2, y2], [x1, y2]], dtype=np.float32)
        pts_transformed = cv2.perspectiveTransform(np.array([pts]), M_inv)[0].astype(int)
        cv2.polylines(frame, [pts_transformed], True, color, 2)
        x_text, y_text = pts_transformed[0]
    else:
        cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
        x_text, y_text = x1, y1
    
    cv2.rectangle(frame, (x_text, y_text - text_h - 10), (x_text + text_w + 5, y_text), color, -1)
    cv2.putText(frame, label, (x_text + 2, y_text - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2, cv2.LINE_AA)

def process_detections(frame, boxes, class_names, show_bg, show_box, use_roi=False):
    """Process all detections and draw them"""
    box_count = 0
    for idx, (box, cls_id) in enumerate(zip(boxes.xyxy, boxes.cls)):
        class_name = class_names[int(cls_id)]
        if class_name == "box" and use_roi:
            box_count += 1
        elif class_name == "box" and not use_roi:
            box_count += 1
        
        if (class_name == "bg" and not show_bg) or (class_name == "box" and not show_box):
            continue
        
        draw_detection(frame, box, cls_id, float(boxes.conf[idx]), class_name, use_roi)
    return box_count

def detect_image(image, show_bg, show_box):
    """Detect boxes in image"""
    if image is None:
        return None, 0
    
    frame = cv2.cvtColor(np.array(image) if not hasattr(image, 'shape') else image, cv2.COLOR_RGB2BGR) if len(image.shape) == 3 else image.copy()
    results = model(frame, imgsz=640, conf=conf_threshold, verbose=False)
    box_count = process_detections(frame, results[0].boxes, model.names, show_bg, show_box, False)
    return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), box_count

def detect_video(video_path, show_bg, use_roi, show_box, progress=gr.Progress()):
    """Detect boxes in video"""
    default_vid = "test.mp4" if os.path.exists("test.mp4") else None
    video_path = video_path or default_vid
    if not video_path or not os.path.exists(video_path):
        return None
    
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        return None
    
    fps, w, h = int(cap.get(cv2.CAP_PROP_FPS)) or 30, int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    output_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
    out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
    
    frame_count = 0
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        
        if use_roi:
            cv2.polylines(frame, [pts_src.astype(int)], True, (255, 0, 0), 2)
            detection_frame = cv2.warpPerspective(frame, M, (width, height))
        else:
            detection_frame = frame
        
        results = model(detection_frame, imgsz=640, conf=conf_threshold, verbose=False)
        frame_box_count = process_detections(frame, results[0].boxes, model.names, show_bg, show_box, use_roi)
        
        out.write(frame)
        frame_count += 1
        progress((frame_count / total_frames) if total_frames > 0 else 0, 
                desc=f"Processing frame {frame_count}/{total_frames} - Boxes: {frame_box_count}")
    
    cap.release()
    out.release()
    return output_path

# UI Setup
default_video_path = "test.mp4" if os.path.exists("test.mp4") else None
default_image_path = "demo.jpg" if os.path.exists("demo.jpg") else None

css = """
.gradio-container { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; }
.header { text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); 
          color: white; border-radius: 10px; margin-bottom: 20px; }
.checkbox-group { background: #f8f9fa; padding: 15px; border-radius: 8px; border: 1px solid #e0e0e0; }
.checkbox-group h3 { color: #000000 !important; }
.checkbox-group label, .checkbox-group .block, .checkbox-group .wrap, .checkbox-group .info { color: #000000 !important; }
.gr-checkbox label, .gr-checkbox .wrap, .gr-checkbox > label, .gr-checkbox label span,
[data-testid*="checkbox"] label, .wrap label { color: #ffffff !important; }
.gradio-app div:has(input[type="checkbox"]) label, div:has(input[type="checkbox"]) > label { color: #ffffff !important; }
"""

with gr.Blocks(css=css, theme=gr.themes.Soft()) as app:
    gr.Markdown("# πŸ“¦ Logistics Box Detection System\n### Warehouse YOLO-based Detection with Customizable Options", elem_classes=["header"])
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### βš™οΈ Detection Settings", elem_classes=["checkbox-group"])
            show_bg = gr.Checkbox(label="Show BG Class (Background)", value=True, info="Display background class detections")
            use_roi = gr.Checkbox(label="Use ROI (Region of Interest)", value=True, info="Apply perspective transform for ROI-based detection (Video only)")
            show_box = gr.Checkbox(label="Show Box Class", value=True, info="Display box class detections")
    
    with gr.Tabs():
        with gr.Tab("πŸ–ΌοΈ Image Detection"):
            with gr.Row():
                with gr.Column():
                    image_input = gr.Image(label="Upload Image", height=400, value=default_image_path)
                    image_button = gr.Button("Detect Boxes", variant="primary", size="lg")
                with gr.Column():
                    image_output = gr.Image(label="Detection Result", type="numpy", height=400)
                    image_box_count = gr.HTML(value="<div style='text-align: center; padding: 15px; background: #f0f0f0; border-radius: 8px; margin-top: 10px;'><h3 style='margin: 0; color: #333;'>πŸ“¦ Total Boxes Detected: <span style='color: #28a745; font-size: 24px; font-weight: bold;'>0</span></h3></div>", label="")
            
            def process_image_wrapper(img, bg, box):
                result, count = detect_image(img, bg, box)
                html = f"<div style='text-align: center; padding: 15px; background: #f0f0f0; border-radius: 8px; margin-top: 10px;'><h3 style='margin: 0; color: #333;'>πŸ“¦ Total Boxes Detected: <span style='color: #28a745; font-size: 24px; font-weight: bold;'>{count}</span></h3></div>"
                return result, html
            
            image_button.click(process_image_wrapper, [image_input, show_bg, show_box], [image_output, image_box_count])
        
        with gr.Tab("πŸŽ₯ Video Detection"):
            with gr.Row():
                with gr.Column():
                    video_input = gr.Video(label="Input Video", height=300, value=default_video_path)
                    video_button = gr.Button("🎬 Process Video (Real-time)", variant="primary", size="lg")
                with gr.Column():
                    video_output = gr.Video(label="Detection Result (Real-time)", height=300)
            
            video_button.click(detect_video, [video_input, show_bg, use_roi, show_box], [video_output])

if __name__ == "__main__":
    app.launch(share=True, server_name="0.0.0.0", server_port=7860)