import gradio as gr import cv2 import numpy as np from ultralytics import YOLO import tempfile import os # Initialize model = YOLO("boxes.pt") conf_threshold = 0.05 # ROI setup pts_src = np.array([[0, 129], [1275, 303], [1274, 601], [3, 294]], dtype=np.float32) width = int(np.linalg.norm(pts_src[0] - pts_src[1])) height = int(np.linalg.norm(pts_src[0] - pts_src[3])) M = cv2.getPerspectiveTransform(pts_src, np.array([[0, 0], [width, 0], [width, height], [0, height]], dtype=np.float32)) M_inv = cv2.getPerspectiveTransform(np.array([[0, 0], [width, 0], [width, height], [0, height]], dtype=np.float32), pts_src) def draw_detection(frame, box, cls_id, conf, class_name, use_roi=False): """Draw single detection box and label""" x1, y1, x2, y2 = map(int, box[:4]) color = (0, 255, 0) if class_name == "box" else (255, 255, 0) label = f"{class_name.upper()}: {conf:.2f}" (text_w, text_h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2) if use_roi: pts = np.array([[x1, y1], [x2, y1], [x2, y2], [x1, y2]], dtype=np.float32) pts_transformed = cv2.perspectiveTransform(np.array([pts]), M_inv)[0].astype(int) cv2.polylines(frame, [pts_transformed], True, color, 2) x_text, y_text = pts_transformed[0] else: cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2) x_text, y_text = x1, y1 cv2.rectangle(frame, (x_text, y_text - text_h - 10), (x_text + text_w + 5, y_text), color, -1) cv2.putText(frame, label, (x_text + 2, y_text - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2, cv2.LINE_AA) def process_detections(frame, boxes, class_names, show_bg, show_box, use_roi=False): """Process all detections and draw them""" box_count = 0 for idx, (box, cls_id) in enumerate(zip(boxes.xyxy, boxes.cls)): class_name = class_names[int(cls_id)] if class_name == "box" and use_roi: box_count += 1 elif class_name == "box" and not use_roi: box_count += 1 if (class_name == "bg" and not show_bg) or (class_name == "box" and not show_box): continue draw_detection(frame, box, cls_id, float(boxes.conf[idx]), class_name, use_roi) return box_count def detect_image(image, show_bg, show_box): """Detect boxes in image""" if image is None: return None, 0 frame = cv2.cvtColor(np.array(image) if not hasattr(image, 'shape') else image, cv2.COLOR_RGB2BGR) if len(image.shape) == 3 else image.copy() results = model(frame, imgsz=640, conf=conf_threshold, verbose=False) box_count = process_detections(frame, results[0].boxes, model.names, show_bg, show_box, False) return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), box_count def detect_video(video_path, show_bg, use_roi, show_box, progress=gr.Progress()): """Detect boxes in video""" default_vid = "test.mp4" if os.path.exists("test.mp4") else None video_path = video_path or default_vid if not video_path or not os.path.exists(video_path): return None cap = cv2.VideoCapture(video_path) if not cap.isOpened(): return None fps, w, h = int(cap.get(cv2.CAP_PROP_FPS)) or 30, int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) output_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) frame_count = 0 while cap.isOpened(): ret, frame = cap.read() if not ret: break if use_roi: cv2.polylines(frame, [pts_src.astype(int)], True, (255, 0, 0), 2) detection_frame = cv2.warpPerspective(frame, M, (width, height)) else: detection_frame = frame results = model(detection_frame, imgsz=640, conf=conf_threshold, verbose=False) frame_box_count = process_detections(frame, results[0].boxes, model.names, show_bg, show_box, use_roi) out.write(frame) frame_count += 1 progress((frame_count / total_frames) if total_frames > 0 else 0, desc=f"Processing frame {frame_count}/{total_frames} - Boxes: {frame_box_count}") cap.release() out.release() return output_path # UI Setup default_video_path = "test.mp4" if os.path.exists("test.mp4") else None default_image_path = "demo.jpg" if os.path.exists("demo.jpg") else None css = """ .gradio-container { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; } .header { text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 10px; margin-bottom: 20px; } .checkbox-group { background: #f8f9fa; padding: 15px; border-radius: 8px; border: 1px solid #e0e0e0; } .checkbox-group h3 { color: #000000 !important; } .checkbox-group label, .checkbox-group .block, .checkbox-group .wrap, .checkbox-group .info { color: #000000 !important; } .gr-checkbox label, .gr-checkbox .wrap, .gr-checkbox > label, .gr-checkbox label span, [data-testid*="checkbox"] label, .wrap label { color: #ffffff !important; } .gradio-app div:has(input[type="checkbox"]) label, div:has(input[type="checkbox"]) > label { color: #ffffff !important; } """ with gr.Blocks(css=css, theme=gr.themes.Soft()) as app: gr.Markdown("# 📦 Logistics Box Detection System\n### Warehouse YOLO-based Detection with Customizable Options", elem_classes=["header"]) with gr.Row(): with gr.Column(scale=1): gr.Markdown("### ⚙️ Detection Settings", elem_classes=["checkbox-group"]) show_bg = gr.Checkbox(label="Show BG Class (Background)", value=True, info="Display background class detections") use_roi = gr.Checkbox(label="Use ROI (Region of Interest)", value=True, info="Apply perspective transform for ROI-based detection (Video only)") show_box = gr.Checkbox(label="Show Box Class", value=True, info="Display box class detections") with gr.Tabs(): with gr.Tab("🖼️ Image Detection"): with gr.Row(): with gr.Column(): image_input = gr.Image(label="Upload Image", height=400, value=default_image_path) image_button = gr.Button("Detect Boxes", variant="primary", size="lg") with gr.Column(): image_output = gr.Image(label="Detection Result", type="numpy", height=400) image_box_count = gr.HTML(value="

📦 Total Boxes Detected: 0

", label="") def process_image_wrapper(img, bg, box): result, count = detect_image(img, bg, box) html = f"

📦 Total Boxes Detected: {count}

" return result, html image_button.click(process_image_wrapper, [image_input, show_bg, show_box], [image_output, image_box_count]) with gr.Tab("🎥 Video Detection"): with gr.Row(): with gr.Column(): video_input = gr.Video(label="Input Video", height=300, value=default_video_path) video_button = gr.Button("🎬 Process Video (Real-time)", variant="primary", size="lg") with gr.Column(): video_output = gr.Video(label="Detection Result (Real-time)", height=300) video_button.click(detect_video, [video_input, show_bg, use_roi, show_box], [video_output]) if __name__ == "__main__": app.launch(share=True, server_name="0.0.0.0", server_port=7860)