File size: 12,852 Bytes
3d90201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1f0fd8
3d90201
a1f0fd8
3d90201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1f0fd8
3d90201
 
a1f0fd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d90201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1f0fd8
3d90201
a1f0fd8
3d90201
a1f0fd8
 
 
 
 
 
3d90201
 
 
a1f0fd8
3d90201
a1f0fd8
3d90201
a1f0fd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d90201
a1f0fd8
 
3d90201
a1f0fd8
ddb486b
a1f0fd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d90201
a1f0fd8
 
 
3d90201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1f0fd8
3d90201
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import os
import time
import cv2
import base64
import numpy as np
import threading
from flask import Flask, render_template, request, jsonify, send_from_directory, Response
from werkzeug.utils import secure_filename

app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'uploads'
app.config['IMAGE_DIR'] = os.path.abspath(os.path.join(os.path.dirname(__file__), 'uploads'))
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024  # 16MB max upload
app.config['ALLOWED_EXTENSIONS'] = {'png', 'jpg', 'jpeg', 'gif', 'bmp', 'tiff'}

# Ensure directories exist
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)


# Global variables for video stream and search results (in-memory only)
current_frame = None
current_frame = None
search_results = {}
feature_database = []  # Store pre-computed features: (filepath, keypoints, descriptors, shape)


def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in app.config['ALLOWED_EXTENSIONS']

def resize_image(img, max_dim):
    """Resize image if larger than max_dim."""
    h, w = img.shape[:2]
    if max(h, w) > max_dim:
        scale = max_dim / max(h, w)
        return cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
    return img

def match_features(des1, des2, matcher, ratio_threshold=0.7):
    """Feature matching with Lowe's ratio test."""
    if des1 is None or des2 is None:
        return []
    try:
        raw_matches = matcher.knnMatch(des1, des2, k=2)
        return [m for m, n in raw_matches if m.distance < ratio_threshold * n.distance]
    except:
        return []

def image_to_base64(img):
    """Convert OpenCV image to base64 string."""
    _, buffer = cv2.imencode('.jpg', img, [cv2.IMWRITE_JPEG_QUALITY, 90])
    img_base64 = base64.b64encode(buffer).decode('utf-8')
    img_base64 = base64.b64encode(buffer).decode('utf-8')
    return f"data:image/jpeg;base64,{img_base64}"

def initialize_database():
    """Pre-compute features for all images in the database."""
    global feature_database
    print("Initializing feature database...")
    
    # Initialize ORB detector
    detector_orb = cv2.ORB_create(nfeatures=500)
    
    # Get all image files
    image_files = [os.path.join(app.config['IMAGE_DIR'], f) for f in os.listdir(app.config['IMAGE_DIR'])
                  if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.tiff'))]
    
    count = 0
    for filepath in image_files:
        try:
            img = cv2.imread(filepath)
            if img is None:
                continue
                
            img_resized = resize_image(img, 800)
            img_gray = cv2.cvtColor(img_resized, cv2.COLOR_BGR2GRAY)
            kp, des = detector_orb.detectAndCompute(img_gray, None)
            
            if des is not None:
                feature_database.append({
                    'filepath': filepath,
                    'filename': os.path.basename(filepath),
                    'image': img_resized,
                    'keypoints': kp,
                    'descriptors': des,
                    'shape': img_resized.shape[:2]
                })
                count += 1
        except Exception as e:
            print(f"Error processing {filepath}: {e}")
            
    print(f"Database initialized with {count} images.")

def run_feature_search(query_image_data, search_id, use_sift=False):
    """Run feature search in background thread with real-time updates."""
    global current_frame
    try:
        # Decode base64 image
        header, encoded = query_image_data.split(',', 1)
        image_bytes = base64.b64decode(encoded)
        nparr = np.frombuffer(image_bytes, np.uint8)
        query_img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
        
        if query_img is None:
            search_results[search_id] = {'status': 'error', 'message': 'Could not decode query image'}
            return
        
        # Keep original color for visualization
        query_img_resized = resize_image(query_img, 800)
        query_img_gray = cv2.cvtColor(query_img_resized, cv2.COLOR_BGR2GRAY)
        
        # Initialize ORB detector
        detector_orb = cv2.ORB_create(nfeatures=500)
        matcher_orb = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=False)
        query_kp_orb, query_des_orb = detector_orb.detectAndCompute(query_img_gray, None)
        
        if query_des_orb is None:
            search_results[search_id] = {'status': 'error', 'message': 'No features detected in query image'}
            return
        
        # Get all image files
        image_files = [os.path.join(app.config['IMAGE_DIR'], f) for f in os.listdir(app.config['IMAGE_DIR'])
                      if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.tiff'))]
        
        search_results[search_id] = {
            'status': 'processing',
            'total': len(image_files),
            'processed': 0
        }
        
        # Progress callback for real-time visualization
        last_update_time = 0
        def update_frame(img):
            nonlocal last_update_time
            global current_frame
            
            # Throttle updates to ~10 FPS to save CPU
            current_time = time.time()
            if current_time - last_update_time < 0.1:
                return
                
            ret, buffer = cv2.imencode('.jpg', img, [cv2.IMWRITE_JPEG_QUALITY, 85])
            if ret:
                current_frame = buffer.tobytes()
                last_update_time = current_time
        
        # Process images using pre-computed features
        top_matches = []
        
        # If database is empty (e.g. new uploads), try to add them on the fly or just warn
        # For simplicity, we'll just iterate the database
        
        search_results[search_id] = {
            'status': 'processing',
            'total': len(feature_database),
            'processed': 0
        }
        
        for idx, entry in enumerate(feature_database):
            filepath = entry['filepath']
            img_resized = entry['image']
            kp = entry['keypoints']
            des = entry['descriptors']
            
            matches = match_features(query_des_orb, des, matcher_orb, 0.75)
            score = len(matches)
            
            # Only keep matches with score >= 8
            if score >= 5:
                # Create visualization for real-time display (in color) - center query image
                h1, w1 = query_img_resized.shape[:2]
                h2, w2 = img_resized.shape[:2]
                max_height = max(h1, h2)
                vis = np.zeros((max_height, w1 + w2, 3), dtype=np.uint8)
                
                # Place query image (centered vertically)
                y_offset_query = (max_height - h1) // 2
                vis[y_offset_query:y_offset_query + h1, :w1] = query_img_resized
                
                # Place matched image (centered vertically)
                y_offset_match = (max_height - h2) // 2
                vis[y_offset_match:y_offset_match + h2, w1:w1+w2] = img_resized
                
                # Draw matches with green lines (adjust for centering)
                for m in matches[:20]:
                    pt1 = (int(query_kp_orb[m.queryIdx].pt[0]), int(query_kp_orb[m.queryIdx].pt[1]) + y_offset_query)
                    pt2 = (int(kp[m.trainIdx].pt[0] + w1), int(kp[m.trainIdx].pt[1]) + y_offset_match)
                    cv2.line(vis, pt1, pt2, (0, 255, 0), 1)
                
                update_frame(vis)
                
                top_matches.append((score, filepath, entry['filename'], img_resized))
                top_matches.sort(key=lambda x: x[0], reverse=True)
                top_matches = top_matches[:15]
            
            search_results[search_id]['processed'] = idx + 1
        
        # Final results
        if top_matches:
            best_score, best_path, best_name, best_img = top_matches[0]
            
            # Create final visualization (in color) - center images without white padding
            final_img_gray = cv2.cvtColor(best_img, cv2.COLOR_BGR2GRAY)
            final_kp, final_des = detector_orb.detectAndCompute(final_img_gray, None)
            final_matches = match_features(query_des_orb, final_des, matcher_orb, 0.75)
            
            # Get dimensions
            h1, w1 = query_img_resized.shape[:2]
            h2, w2 = best_img.shape[:2]
            
            # Calculate max height and create visualization with black background
            max_height = max(h1, h2)
            final_vis = np.zeros((max_height, w1 + w2, 3), dtype=np.uint8)
            
            # Place query image (centered vertically)
            y_offset_query = (max_height - h1) // 2
            final_vis[y_offset_query:y_offset_query + h1, :w1] = query_img_resized
            
            # Place matched image (centered vertically)
            y_offset_match = (max_height - h2) // 2
            final_vis[y_offset_match:y_offset_match + h2, w1:w1+w2] = best_img
            
            # Draw matches (adjust y coordinates for centering)
            for m in final_matches[:30]:
                pt1_x = int(query_kp_orb[m.queryIdx].pt[0])
                pt1_y = int(query_kp_orb[m.queryIdx].pt[1]) + y_offset_query
                pt2_x = int(final_kp[m.trainIdx].pt[0] + w1)
                pt2_y = int(final_kp[m.trainIdx].pt[1]) + y_offset_match
                cv2.line(final_vis, (pt1_x, pt1_y), (pt2_x, pt2_y), (0, 255, 0), 1)
            
            search_results[search_id] = {
                'status': 'completed',
                'best_match': {
                    'filename': best_name,
                    'score': best_score,
                    'match_image': image_to_base64(final_vis)
                },
                'top_matches': [
                    {'filename': name, 'score': sc, 'image': image_to_base64(img)}
                    for sc, _, name, img in top_matches[:10]
                ]
            }
        else:
            search_results[search_id] = {
                'status': 'completed',
                'best_match': None,
                'top_matches': [],
                'message': 'No results found (all matches below threshold of 8)'
            }
    except Exception as e:
        search_results[search_id] = {'status': 'error', 'message': str(e)}
        print(f"Search error: {e}")

def gen_frames():
    """Generate frames for video feed."""
    global current_frame
    while True:
        if current_frame:
            yield (b'--frame\r\n'
                   b'Content-Type: image/jpeg\r\n\r\n' + current_frame + b'\r\n')
        time.sleep(0.03)  # ~33 FPS

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/upload', methods=['POST'])
def upload_file():
    """Handle image upload."""
    if 'file' not in request.files:
        return jsonify({'error': 'No file part'}), 400
    
    file = request.files['file']
    if file.filename == '':
        return jsonify({'error': 'No selected file'}), 400
    
    if file and allowed_file(file.filename):
        filename = secure_filename(file.filename)
        filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
        file.save(filepath)
        return jsonify({
            'success': True,
            'filename': filename,
            'url': f'/uploads/{filename}'
        })
    
    return jsonify({'error': 'Invalid file type'}), 400

@app.route('/uploads/<filename>')
def uploaded_file(filename):
    """Serve uploaded images."""
    return send_from_directory(app.config['UPLOAD_FOLDER'], filename)

@app.route('/search_features', methods=['POST'])
def search_features():
    """Start feature search on extracted image region."""
    data = request.json
    if 'image' not in data:
        return jsonify({'error': 'No image provided'}), 400
    
    # Generate unique search ID
    search_id = f"search_{int(time.time() * 1000)}"
    
    # Get use_sift parameter (default False now)
    use_sift = data.get('use_sift', False)
    
    # Start search in background thread
    thread = threading.Thread(target=run_feature_search, args=(data['image'], search_id, use_sift))
    thread.daemon = True
    thread.start()
    
    return jsonify({'search_id': search_id})

@app.route('/search_status/<search_id>')
def search_status(search_id):
    """Get current status of feature search."""
    if search_id not in search_results:
        return jsonify({'status': 'not_found'}), 404
    
    return jsonify(search_results[search_id])

@app.route('/video_feed')
def video_feed():
    """Stream real-time visualization."""
    return Response(gen_frames(), mimetype='multipart/x-mixed-replace; boundary=frame')

if __name__ == '__main__':
    initialize_database()
    app.run(debug=False, host='0.0.0.0', port=7860)