|
|
import torch |
|
|
import numpy as np |
|
|
from torch.nn import functional as F |
|
|
|
|
|
|
|
|
def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32): |
|
|
""" |
|
|
Taken from https://github.com/mkocabas/VIBE/blob/master/lib/utils/geometry.py |
|
|
Calculates the rotation matrices for a batch of rotation vectors |
|
|
- param rot_vecs: torch.tensor (N, 3) array of N axis-angle vectors |
|
|
- returns R: torch.tensor (N, 3, 3) rotation matrices |
|
|
""" |
|
|
batch_size = rot_vecs.shape[0] |
|
|
device = rot_vecs.device |
|
|
|
|
|
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True) |
|
|
rot_dir = rot_vecs / angle |
|
|
|
|
|
cos = torch.unsqueeze(torch.cos(angle), dim=1) |
|
|
sin = torch.unsqueeze(torch.sin(angle), dim=1) |
|
|
|
|
|
|
|
|
rx, ry, rz = torch.split(rot_dir, 1, dim=1) |
|
|
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device) |
|
|
|
|
|
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device) |
|
|
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1).view( |
|
|
(batch_size, 3, 3) |
|
|
) |
|
|
|
|
|
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) |
|
|
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K) |
|
|
return rot_mat |
|
|
|
|
|
|
|
|
def quaternion_mul(q0, q1): |
|
|
""" |
|
|
EXPECTS WXYZ |
|
|
:param q0 (*, 4) |
|
|
:param q1 (*, 4) |
|
|
""" |
|
|
r0, r1 = q0[..., :1], q1[..., :1] |
|
|
v0, v1 = q0[..., 1:], q1[..., 1:] |
|
|
r = r0 * r1 - (v0 * v1).sum(dim=-1, keepdim=True) |
|
|
v = r0 * v1 + r1 * v0 + torch.linalg.cross(v0, v1) |
|
|
return torch.cat([r, v], dim=-1) |
|
|
|
|
|
|
|
|
def quaternion_inverse(q, eps=1e-8): |
|
|
""" |
|
|
EXPECTS WXYZ |
|
|
:param q (*, 4) |
|
|
""" |
|
|
conj = torch.cat([q[..., :1], -q[..., 1:]], dim=-1) |
|
|
mag = torch.square(q).sum(dim=-1, keepdim=True) + eps |
|
|
return conj / mag |
|
|
|
|
|
|
|
|
def quaternion_slerp(t, q0, q1, eps=1e-8): |
|
|
""" |
|
|
:param t (*, 1) must be between 0 and 1 |
|
|
:param q0 (*, 4) |
|
|
:param q1 (*, 4) |
|
|
""" |
|
|
dims = q0.shape[:-1] |
|
|
t = t.view(*dims, 1) |
|
|
|
|
|
q0 = F.normalize(q0, p=2, dim=-1) |
|
|
q1 = F.normalize(q1, p=2, dim=-1) |
|
|
dot = (q0 * q1).sum(dim=-1, keepdim=True) |
|
|
|
|
|
|
|
|
neg = dot < 0 |
|
|
q1 = torch.where(neg, -q1, q1) |
|
|
dot = torch.where(neg, -dot, dot) |
|
|
angle = torch.acos(dot) |
|
|
|
|
|
|
|
|
collin = torch.abs(dot) > 1 - eps |
|
|
fac = 1 / torch.sin(angle) |
|
|
w0 = torch.where(collin, 1 - t, torch.sin((1 - t) * angle) * fac) |
|
|
w1 = torch.where(collin, t, torch.sin(t * angle) * fac) |
|
|
slerp = q0 * w0 + q1 * w1 |
|
|
return slerp |
|
|
|
|
|
|
|
|
def rotation_matrix_to_angle_axis(rotation_matrix): |
|
|
""" |
|
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
|
|
|
Convert rotation matrix to Rodrigues vector |
|
|
""" |
|
|
quaternion = rotation_matrix_to_quaternion(rotation_matrix) |
|
|
aa = quaternion_to_angle_axis(quaternion) |
|
|
aa[torch.isnan(aa)] = 0.0 |
|
|
return aa |
|
|
|
|
|
|
|
|
def quaternion_to_angle_axis(quaternion): |
|
|
""" |
|
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
|
|
|
Convert quaternion vector to angle axis of rotation. |
|
|
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h |
|
|
|
|
|
:param quaternion (*, 4) expects WXYZ |
|
|
:returns angle_axis (*, 3) |
|
|
""" |
|
|
|
|
|
q1 = quaternion[..., 1] |
|
|
q2 = quaternion[..., 2] |
|
|
q3 = quaternion[..., 3] |
|
|
sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3 |
|
|
|
|
|
sin_theta = torch.sqrt(sin_squared_theta) |
|
|
cos_theta = quaternion[..., 0] |
|
|
two_theta = 2.0 * torch.where( |
|
|
cos_theta < 0.0, |
|
|
torch.atan2(-sin_theta, -cos_theta), |
|
|
torch.atan2(sin_theta, cos_theta), |
|
|
) |
|
|
|
|
|
k_pos = two_theta / sin_theta |
|
|
k_neg = 2.0 * torch.ones_like(sin_theta) |
|
|
k = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) |
|
|
|
|
|
angle_axis = torch.zeros_like(quaternion)[..., :3] |
|
|
angle_axis[..., 0] += q1 * k |
|
|
angle_axis[..., 1] += q2 * k |
|
|
angle_axis[..., 2] += q3 * k |
|
|
return angle_axis |
|
|
|
|
|
|
|
|
def angle_axis_to_rotation_matrix(angle_axis): |
|
|
""" |
|
|
:param angle_axis (*, 3) |
|
|
return (*, 3, 3) |
|
|
""" |
|
|
quat = angle_axis_to_quaternion(angle_axis) |
|
|
return quaternion_to_rotation_matrix(quat) |
|
|
|
|
|
|
|
|
def quaternion_to_rotation_matrix(quaternion): |
|
|
""" |
|
|
Convert a quaternion to a rotation matrix. |
|
|
Taken from https://github.com/kornia/kornia, based on |
|
|
https://github.com/matthew-brett/transforms3d/blob/8965c48401d9e8e66b6a8c37c65f2fc200a076fa/transforms3d/quaternions.py#L101 |
|
|
https://github.com/tensorflow/graphics/blob/master/tensorflow_graphics/geometry/transformation/rotation_matrix_3d.py#L247 |
|
|
:param quaternion (N, 4) expects WXYZ order |
|
|
returns rotation matrix (N, 3, 3) |
|
|
""" |
|
|
|
|
|
quaternion_norm = F.normalize(quaternion, p=2, dim=-1, eps=1e-12) |
|
|
*dims, _ = quaternion_norm.shape |
|
|
|
|
|
|
|
|
w, x, y, z = torch.chunk(quaternion_norm, chunks=4, dim=-1) |
|
|
|
|
|
|
|
|
tx = 2.0 * x |
|
|
ty = 2.0 * y |
|
|
tz = 2.0 * z |
|
|
twx = tx * w |
|
|
twy = ty * w |
|
|
twz = tz * w |
|
|
txx = tx * x |
|
|
txy = ty * x |
|
|
txz = tz * x |
|
|
tyy = ty * y |
|
|
tyz = tz * y |
|
|
tzz = tz * z |
|
|
one = torch.tensor(1.0) |
|
|
|
|
|
matrix = torch.stack( |
|
|
( |
|
|
one - (tyy + tzz), |
|
|
txy - twz, |
|
|
txz + twy, |
|
|
txy + twz, |
|
|
one - (txx + tzz), |
|
|
tyz - twx, |
|
|
txz - twy, |
|
|
tyz + twx, |
|
|
one - (txx + tyy), |
|
|
), |
|
|
dim=-1, |
|
|
).view(*dims, 3, 3) |
|
|
return matrix |
|
|
|
|
|
|
|
|
def angle_axis_to_quaternion(angle_axis): |
|
|
""" |
|
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
Convert angle axis to quaternion in WXYZ order |
|
|
:param angle_axis (*, 3) |
|
|
:returns quaternion (*, 4) WXYZ order |
|
|
""" |
|
|
theta_sq = torch.sum(angle_axis**2, dim=-1, keepdim=True) |
|
|
|
|
|
valid = theta_sq > 0 |
|
|
theta = torch.sqrt(theta_sq) |
|
|
half_theta = 0.5 * theta |
|
|
ones = torch.ones_like(half_theta) |
|
|
|
|
|
k = torch.where(valid, torch.sin(half_theta) / theta, 0.5 * ones) |
|
|
w = torch.where(valid, torch.cos(half_theta), ones) |
|
|
quat = torch.cat([w, k * angle_axis], dim=-1) |
|
|
return quat |
|
|
|
|
|
|
|
|
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): |
|
|
""" |
|
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
Convert rotation matrix to 4d quaternion vector |
|
|
This algorithm is based on algorithm described in |
|
|
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 |
|
|
|
|
|
:param rotation_matrix (N, 3, 3) |
|
|
""" |
|
|
*dims, m, n = rotation_matrix.shape |
|
|
rmat_t = torch.transpose(rotation_matrix.reshape(-1, m, n), -1, -2) |
|
|
|
|
|
mask_d2 = rmat_t[:, 2, 2] < eps |
|
|
|
|
|
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] |
|
|
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] |
|
|
|
|
|
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] |
|
|
q0 = torch.stack( |
|
|
[ |
|
|
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], |
|
|
t0, |
|
|
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], |
|
|
rmat_t[:, 2, 0] + rmat_t[:, 0, 2], |
|
|
], |
|
|
-1, |
|
|
) |
|
|
t0_rep = t0.repeat(4, 1).t() |
|
|
|
|
|
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] |
|
|
q1 = torch.stack( |
|
|
[ |
|
|
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], |
|
|
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], |
|
|
t1, |
|
|
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], |
|
|
], |
|
|
-1, |
|
|
) |
|
|
t1_rep = t1.repeat(4, 1).t() |
|
|
|
|
|
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] |
|
|
q2 = torch.stack( |
|
|
[ |
|
|
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], |
|
|
rmat_t[:, 2, 0] + rmat_t[:, 0, 2], |
|
|
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], |
|
|
t2, |
|
|
], |
|
|
-1, |
|
|
) |
|
|
t2_rep = t2.repeat(4, 1).t() |
|
|
|
|
|
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] |
|
|
q3 = torch.stack( |
|
|
[ |
|
|
t3, |
|
|
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], |
|
|
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], |
|
|
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], |
|
|
], |
|
|
-1, |
|
|
) |
|
|
t3_rep = t3.repeat(4, 1).t() |
|
|
|
|
|
mask_c0 = mask_d2 * mask_d0_d1 |
|
|
mask_c1 = mask_d2 * ~mask_d0_d1 |
|
|
mask_c2 = ~mask_d2 * mask_d0_nd1 |
|
|
mask_c3 = ~mask_d2 * ~mask_d0_nd1 |
|
|
mask_c0 = mask_c0.view(-1, 1).type_as(q0) |
|
|
mask_c1 = mask_c1.view(-1, 1).type_as(q1) |
|
|
mask_c2 = mask_c2.view(-1, 1).type_as(q2) |
|
|
mask_c3 = mask_c3.view(-1, 1).type_as(q3) |
|
|
|
|
|
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 |
|
|
q /= torch.sqrt( |
|
|
t0_rep * mask_c0 |
|
|
+ t1_rep * mask_c1 |
|
|
+ t2_rep * mask_c2 |
|
|
+ t3_rep * mask_c3 |
|
|
) |
|
|
q *= 0.5 |
|
|
return q.reshape(*dims, 4) |
|
|
|