Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import joblib | |
| import spacy | |
| import numpy as np | |
| from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | |
| from sklearn.preprocessing import MultiLabelBinarizer | |
| from sklearn.base import BaseEstimator, TransformerMixin | |
| nlp = spacy.load('en_core_web_sm') | |
| tfidf = joblib.load('./tfidf.joblib') | |
| model = joblib.load('./model.joblib') | |
| tags_binarizer = joblib.load('./tags.joblib') | |
| def lemmatize(s: str) -> iter: | |
| # tokenize | |
| doc = nlp(s) | |
| # remove punct and stopwords | |
| tokens = filter(lambda token: not token.is_space and not token.is_punct and not token.is_stop and not token.is_digit, doc) | |
| # lemmatize | |
| return map(lambda token: token.lemma_.lower(), tokens) | |
| def predict(title: str , post: str): | |
| text = title + " " + post | |
| lemmes = np.array([' '.join(list(lemmatize(text)))]) | |
| X = tfidf.transform(lemmes) | |
| y_bin = model.predict(X) | |
| y_tags = tags_binarizer.inverse_transform(y_bin) | |
| return y_tags | |
| demo = gr.Interface( | |
| fn=predict, | |
| inputs=[ | |
| gr.Textbox(lines=1, placeholder="Title..."), | |
| gr.Textbox(lines=10, placeholder="Post...")], | |
| outputs=gr.Textbox(lines=10)) | |
| demo.launch() |